Fundamental Algorithms

Exercise 1 – Hypergraphs

A *hypergraph* extends the concept of a graph in the sense that edges are allowed to connect an arbitrary number of vertices (instead of exactly two). Hence, a *hypergraph* is defined as a tuple (V, H), where V is a set of vertices and H is a set of *hyperedges*, where $H \subset \mathcal{P}(H) \setminus \{\emptyset\}$, with $\mathcal{P}(H)$ the power set (i.e., the set of all possible subsets) of H.

Let's assume a hypergraph where *V* is a set of authors, and each hyperedge $h \in H$ contains all authors of a specific scientific article.

- **a)** Give a suitable definition of the concept of a *path* in a hyperedge.
- **b)** Given is the hypergraph $S = (V_S, H_S)$ of "all" scientific articles. The Erdös number Er(a) of an author $a \in V_S$ is defined as the length of the shortest path in *S* that connects the specific vertex $e \in V$ (*e* corresponds to the author Paul Erdös) to *a*. Write down an algorithm to determine Er(a).

Hint: you can build such an algorithm by extending one of the graph traversals we discussed in the lecture!

c) Try to formulate the problem of 1b) as a graph problem!

Exercise 2 – Bipartite Graphs

(Idea for this exercise taken from: Kleinberg, Tardos: Algorithm Design, Pearson Education, 2006.)

The following exercise is based on the concept of so-called *bipartite* graphs:

A graph (V, E) is called bipartite, if there exist V_0 and V_1 with $V_0 \subset V$ and $V_1 = V \setminus V_0$, and for all $(v, w) \in E$ there is either $v \in V_0$ and $w \in V_1$, or $w \in V_0$ and $v \in V_1$.

To put it simpler: for a bipartite graph, it is possible to attribute each node $v \in V$ with one of two "colors", say red and black, such that any edge $e \in E$ will connect a red and a black node (and no edge will connect edges of the same color).

a) Give a prove to the following claim:

If a graph (V, E) is bipartite, then it cannot contain an odd cycle (i.e., a cycle of odd length).

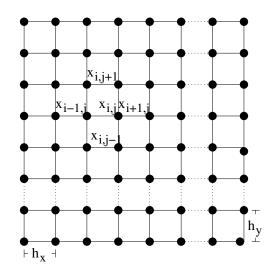


Figure 1: Simple graph obtainied from a Cartesian discretization mesh.

b) Try to find an algorithm that tests whether a given graph is bipartite.

Hint: you can build such an algorithm by extending one of the graph traversals we discussed in the lecture!

c) Try to give a prove for the following claim (using the algorithm from Exercise 2):

If a graph (V, E) *is not bipartite, then it will contain an odd cycle.*

d) Consider the graph in Fig. ?? obtained from a Cartesian discretization mesh. Is this a bipartite graph?