
SPREAD: An Adaptive Scheme for Redundant and Fair Storage in
Dynamic Heterogeneous Storage Systems

Mario Mense∗ Christian Scheideler†

Abstract

In this paper we study the problem of designing an
adaptive hash table for redundant data storage in a
system of storage devices with arbitrary capacities.
Ideally, such a hash table should make sure that (a)
a storage device with x% of the available capacity
should get x% of the data, (b) the copies of each data
item are distributed among the storage devices so that
no two copies are stored at the same device, and (c)
only a near-minimum amount of data replacements is
necessary to preserve (a) and (b) under any change
in the system. Hash tables satisfying (a) and (c) are
already known, and it is not difficult to construct hash
tables satisfying (a) and (b). However, no hash table
is known so far that can satisfy all three properties
as long as this is in principle possible. We present a
strategy called SPREAD that solves this problem for
the first time. As long as (a) and (b) can in principle
be satisfied, SPREAD preserves (a) for every storage
device within a (1 ± ε) factor, with high probability,
where ε > 0 can be made arbitrarily small, guarantees
(b) for every data item, and only needs a constant factor
more data replacements than minimum possible in order
to preserve (a) and (b).

1 Introduction

In this paper, we consider the problem of designing a
hash table for a system of heterogeneous storage devices
so that the following conditions are met:

1. Fairness: Every storage device is assigned a fair
share of the total data load, or more precisely, a
storage device with x% of the available capacity
should get x% of the data. Besides the data,
the fairness condition should also hold for the
read/write requests.

2. Efficiency: The total space for storing control
information of the hash table should only depend
on the number of storage devices and not on their

∗Heinz Nixdorf Institut, University of Paderborn, Germany.
Email: vodisek@upb.de

†Institut für Informatik, Technische Universität München,
Germany. Email: scheideler@in.tum.de.

differences in storage capacity, and the time for
computing the position of a copy of any data item
should be at most logarithmic in the system size.

3. Redundancy: The copies of each data item are
distributed among the storage devices so that no
two copies are stored on the same device.

4. Adaptivity: The system should be able to pre-
serve the conditions above (as long as this is in
principle possible) under any change in the system
(including changes in the number or size of the stor-
age devices or in the number of data items) with a
near-minimum amount of data movements. Adap-
tivity is measured by applying competitive analy-
sis. That is, for an operation ω representing any
change in the system, we intend to compare the
number of (re-)placements of copies performed by
the given placement scheme with the number of
(re-)placements of copies performed by an optimal
strategy that ensures that, after every operation,
the fairness and redundancy conditions are satis-
fied. A storage strategy is called c-adaptive con-
cerning operation ω if, on expectation, it requires
the (re-)placement of at most c times the number
of copies an optimal strategy would need for ω.

Hash tables with these properties have many interesting
applications. Consider, for example, a storage system
that consists of a large collection of disks. Over the
time, old disks have to be replaced by new disks or new
disks have to be added in order to provide sufficient
capacity to the users. In this case, it would be desirable
to just buy any disk available on the market and plug
it into the system instead of making sure that it has
the same capacity or performance as some other disks
in the system (so that standard striping strategies such
as those used in the RAID standard can be applied for
redundant data storage). In this case, storage strategies
are needed that are fair so that capacity or performance
differences among the disks can be taken into account.
Also redundancy is important for disk systems since
disks can fail, and adaptivity ensures that the work for
adding or removing disks can be kept small so that the
system has a high availability. The adaptivity property

can also be used to take full control of the overhead of
integrating a new disk into the system by controlling
the speed at which the disk capacity declared to the
system grows from 0 to its actual capacity without ever
being in an intermediate or unsafe state. Another nice
application would be distributed web caches (like the
Akamai system) or peer-to-peer systems. Even though
in theory, many designs for peer-to-peer hash tables
have focused on distributing the data load evenly among
the peers, in practice this will not be the best solution
simply because the peers differ in reliability, bandwidth
and the storage capacity they can or are willing to offer
to the peer-to-peer system.

1.1 Previous work. Before we present a hash table
that can satisfy all of the conditions above, we present
previous work in this area and discuss why it is so
difficult to adapt these so that all conditions are met.

Uniform Capacities. If all storage devices have the
same capacity, it is not difficult to satisfy all conditions
above if the only changes allowed in the system are
to add or remove storage devices, respectively data
items. A prominent strategy here is consistent hashing
[8] which (in its basic form) uses two hash functions,
g : U → [0, 1) and h : V → [0, 1), where U is the
address space of the data items and V is the address
space of the storage devices, or nodes. Every data item
d ∈ U is stored at the node v with h(v) being closest
from above to g(d) (where [0, 1) is seen as a modulo 1
ring). Other adaptive hash table methods for uniform
storage devices have been presented in [3, 15], but like
consistent hashing, these are hard to extend to the non-
uniform case.

Non-Uniform Capacities. The first adaptive hash
tables that can handle storage devices of arbitrary
capacities were introduced in [4], called SHARE and
SIEVE. SHARE, for example, uses two stages to reduce
the problem of managing non-uniform nodes to uniform
nodes so that consistent hashing can be applied.

Let n be the number of nodes in the system and let
c1, . . . , cn ∈ [0, 1] denote their relative capacities, i.e.,∑

i ci = 1. For a hash table to be adaptive, it has to be
able to handle any capacity change from (c1, . . . , cn) to
(c′1, . . . , c

′
n). Certainly, any storage strategy that wants

to preserve fairness has to replace at least a
∑

i:ci>c′i

(ci − c′i) =
1
2

∑

i

|ci − c′i|

fraction of the data in the system. Hence, the following
fact is true, which has been used to bound the adaptivity
of SHARE and SIEVE.

Fact 1.1. If, for any change from (c1, . . . , cn) to
(c′1, . . . , c

′
n), a storage strategy only needs to replace a

d
∑

i |ci − c′i|-fraction of the data in the system, then it
is 2d-adaptive w.r.t. capacity changes.

For any capacity distribution, SHARE and SIEVE
are efficient, 2-adaptive and fair within a (1± ε) factor,
where the constant ε > 0 can be made arbitrarily small
[4]. However, none of the two strategies can also be
made redundant under all capacity distributions that,
in principle, allow a fair distribution of the data. Even
the case of 2 copies for each data item is hard. Consider
the following simple example.

We have three nodes with capacities c1 = 1/2,
c2 = 1/4 and c3 = 1/4, and each data item is supposed
to have 2 copies stored at different nodes. For a fair
distribution of the copies, we must restrict ourselves
to the combinations (node 1, node 2) and (node 1,
node 3) for the 2 copies of a data item. If we also
allow combinations (node 2, node 3), fairness cannot be
achieved any more. Hence, in order to achieve fairness
and redundancy at the same time, we have to fight with
the problem of forbidding certain combinations (or more
generally, to carefully select node combinations and give
them appropriate weights). SHARE and SIEVE do
not offer an easy way of doing this. In [16], a related
strategy, called DHHT, was introduced but this strategy
cannot handle redundancy and fairness as well.

Other Approaches. In [11], Litwin, et al. describe
LH* schemes, a class of scalable distributed data struc-
tures (SDDS) which are derived from linear hashing
[5]. Several LH* variants incorporate fault-tolerance
features, such as mirroring, checksum, or Reed-Solomon
codes (see e.g. [1, 9, 10, 12]). Depending on the over-
flow policy, space utilization is more or less fine, but
the LH* variants provide no mechanisms to cope with
non-uniform disk capacities.

In [6, 7], Honicky and Miller introduce a family of
pseudo-random algorithms that provide a decentralized
mapping of replicated objects to a collection of disks
that can be grouped into clusters of homogeneous disks.
These clusters are assumed to be of sufficient size so that
the copies of each data item assigned to a cluster can be
stored in different disks. In this case, redundancy and
fairness can be achieved, but there is no obvious way of
extending their schemes to disks of arbitrary capacities
so that these properties are still true.

Recently, Brinkmann et al. [2] proposed the first
scheme for systems of disks with arbitrary capacities
that is fair and redundant, but it is only Θ(r2)-adaptive
in the worst case for r copies per data item whereas we
are aiming at a constant adaptivity that is independent
of r.

1.2 Our contributions. In this paper, we introduce
a storage strategy named SPREAD with the following
performance.

Theorem 1.1. Consider the problem of storing r
copies for each data item in a fair and redundant way
in a system of heterogeneous storage devices. SPREAD
solves this problem in an efficient way while being O(1)-
adaptive for any capacity change in the system as long
as at any time, ci ≤ 1/r for every node i.

Note that the condition that ci ≤ 1/r for every node
i is necessary for being redundant and fair, and therefore
SPREAD works in any case in which redundancy and
fairness can, in principle, be achieved. The rest of the
paper is devoted to the proof of the theorem.

2 The SPREAD Strategy

In this section, we describe and analyze the SPREAD
strategy. We first describe the basic framework of
SPREAD, leaving out various details about how to
achieve fairness, redundancy and adaptivity. After-
wards, we bound the time- and space-efficiency of
SPREAD (Section 2.2), describe how to achieve fairness
and redundancy (Section 2.3), and show how to make
SPREAD O(1)-adaptive (Sections 2.4 and 2.5). At the
end, we discuss how to extend SPREAD to the case that
the data items have different levels of redundancy.

2.1 The basic scheme. In the following, V repre-
sents the set of all storage system (or node) identifiers
and U represents the set of all data identifiers. The
parameter r represents the redundancy required for the
data items in the system.

For any history of changes in the system up to some
given time point, let n be the maximum number of nodes
that have been in the system at the same time. When
using the strategy that every node newly entering the
system obtains the lowest available identifier ≥ 1, we
can make sure that the nodes will be numbered in a
range from 1 to n. Let c1, . . . , cn ∈ [0, 1] represent
the relative capacities of the nodes at some given time
point (i.e.,

∑
i ci = 1). (Note that the capacity of any

currently unoccupied identifier is equal to 0, but it will
nevertheless be part of the SPREAD data structure.)

SPREAD needs three (pseudo-)random hash func-
tions: a hash function h : V → [0, 1) for the nodes
and two hash functions g1, g2 : U → [0, 1) for the data
items. The interval [0, 1) will be considered as a mod-
ulo 1 ring. Like in SHARE [4], SPREAD makes use
of a stretch factor s = σ log N where N = |V | (resp.
the maximum number of nodes the system can expect)
and σ is a sufficiently large constant that is chosen so
that s ∈ N. For each node v we identify an interval

I(v) = [h(v), h(v) + s · r · ci mod 1) of length s · r · ci

in the [0, 1)-ring. h(v) is called its starting point and
h(v) + s · r · ci mod 1 its endpoint. If s · r · ci > 1, we
consider I(v) to be wrapped around [0, 1) bs·r ·cic many
times.

The SPREAD data structure maintains a partition
of the [0, 1) interval into n frames F1, . . . , Fn where
Fv starts at h(v) and ends at the closest successor of
h(v) among the points {h(1), . . . , h(n)} \ {h(v)} (where
[0, 1) is treated as a ring). Each frame Fv is further
partitioned into subframes. We will explain later how
these subframes are chosen. For now, we just mention
that the subframe decomposition only depends on n
and h(1), . . . , h(n) and not on the capacities of the
nodes, and as n grows, some of these subframes may
be partitioned into smaller subframes.

For each subframe f , SPREAD aims at maintaining
one (and sometimes two, as will be explained later)
(s/α)×r-table Tf of r·s/α slots which are organized into
s/α groups (or columns) of size r each, where α > 0 is a
small constant that is selected so that a certain degree
of fairness is maintained. Every slot is assigned to (resp.
owned by) exactly one node, and the assignment has to
be chosen so that for each group of r slots, each slot
is assigned to a different node. Then we can use the
following strategy in order to ensure redundancy.

Whenever we want to read or overwrite the copies of
some data item d, we perform the following steps. First,
we identify the unique subframe f with g1(d) ∈ f . Then
we pick group d(s/α) · g2(d)e in Tf and either read or
store the copies of d in the r nodes owning the slots in
this group.

Given that the hash functions can be evaluated in
constant time and there are m subframes in the system,
standard data structures such as search trees and arrays
can be used to obtain the following result.

Lemma 2.1. The lookup and insert operations of
SPREAD can be implemented with runtime O(r+log m)
and space O(m(r · s/α) log n).

Hence, as long as m is close to linear in n, SPREAD
is time- and space-efficient. In the following subsections,
we show that there is a way of maintaining the tables
so that also the fairness, redundancy and adaptivity
conditions are satisfied.

2.2 Subframe management. Ideally, we would like
to have the following subframe decomposition for each
frame Fv. For the subframes f0, f1, f2, . . . following
Fv in the [0, 1)-ring (in ascending direction) it holds
that |fi| = ε(1 + ε)i|Fv| for some fixed ε > 0. If this
were true, we could approximate any interval I(v) with
|I(v)| ≥ |Fv| by an interval I ′(v) ending at a starting

point of some subframe fi so that |I ′(v)| is within
(1± ε)|I(v)|. In fact, the following lemma holds.

Lemma 2.2. Suppose that k is the maximum value so
that |Fv|+

∑k−1
i=0 |fi| ≤ |I(v)|. Then |Fv|+

∑k−1
i=0 |fi| ≥

(1− ε)|I(v)| and |Fv|+
∑k

i=0 |fi| ≤ (1 + ε)|I(v)|.
Proof. It holds that |Fv|+

∑k−1
i=0 |fi| = (1+ ε

∑k−1
i=0 (1+

ε)i)|Fv| = (1 + ε)k|Fv| for any k ≥ 0. Hence, for
|Fv|+

∑k−1
i=0 |fi| ≤ |I(v)| ≤ |Fv|+

∑k
i=0 |fi| we get that

|Fv|+
∑k−1

i=0 |fi| ≥ 1/(1+ε)|I(v)| = (1−ε/(1+ε))|I(v)| ≥
(1− ε)|I(v)| and |Fv|+

∑k
i=0 |fi| ≤ (1 + ε)|I(v)|. ut

Thus, we can either decide to round I(v) down to
the starting point of the subframe containing its end-
point or up to the starting point of the next subframe
in order to obtain an interval I ′(v) whose size is within
(1 ± ε)|I(v)|. If |I(v)| is at most |Fv|, we identify I ′(v)
with I(v), i.e., we do not round I(v).

Of course, choosing a subframe decomposition so
that there are subframes f0, f1, f2, . . . after each Fv of
sizes |fi| = ε(1+ε)i|Fv| is not possible, but it is sufficient
to cut each Fw into subframes so that the following
condition is true for every Fv:

Subframe condition: For any two frames or sub-
frames f and f ′, let ∆(f, f ′) be the distance (in as-
cending direction along the [0, 1)-ring) of the endpoint
of f to the starting endpoint of f ′. For every w ∈
{1, . . . , n} \ {v} and every subframe f in Fv we require
that |f | ≤ ε(1 + ε)k|Fw| where k ∈ N0 is maximum
possible so that ε

∑k−1
i=1 (1 + ε)i|Fw| ≤ ∆(Fw, f).

If this condition is true, it is easy to see that we
can still round I(v) down to the starting point of the
subframe containing its endpoint or up to the starting
point of the next subframe in order to obtain an interval
I ′(v) whose size is within (1± ε)|I(v)|.

In order to satisfy the subframe condition, we
use the following decomposition strategy. Given
h(1), . . . , h(n), we start with a single subframe repre-
senting the entire [0, 1) interval, and we keep cutting
subframes in half until the subframe condition is true
everywhere (when considering each subframe crossing
b ≥ 1 frame borders as being cut into b + 1 subframes
at these borders). This leads to a unique decomposition
into subframes (for any given h(1), . . . , h(n)) with the
property that for every subframe f that is not the first
of last subframe in some Fv, |f | = 1/2k for some k ∈ N0.
Moreover, whenever n is increased, the decomposition
strategy will only cause some subframes to be cut into
smaller subframes, which turns out to be useful for the
adaptivity of SPREAD. The following two lemmas show
that, w.h.p., our decomposition rule does not create too
many subframes.

Lemma 2.3. The number of frames Fv in the system
with |Fv| ≤ δ/n is bounded by 2δn+O(

√
n), w.h.p., and

the smallest size of a frame Fv is at least 1/nk for some
constant k, w.h.p.1

Proof. For every node v let the random variable
Xv be equal to h(v). Given a fixed δ, let
the function f(X1, . . . , Xn) represent the number of
frames of size at most δ/n. It certainly holds
that |f(x1, . . . , xn) − f(x′1, . . . , x

′
n)| ≤ 2 whenever

(x1, . . . , xn) and (x′1, . . . , x
′
n) differ in at most one co-

ordinate. Moreover, it holds for any v and δ ≤ 1 that
Pr[|Fv| ≤ δ/n] = 1−(1−δ/n)n−1 ≤ 1−(1−(n−1)δ/n+(
n−1

2

)
(δ/n)2) = (n−1)δ/n−(

n−1
2

)
(δ/n)2 ≤ δ, which im-

plies that E[f] ≤ δn. Hence, it follows from the method
of bounded differences (e.g., [13]) that for any d ≥ 0,
Pr[f ≥ δn + d] ≤ e−d2/(2n). Choosing d = δn + Θ(

√
n)

results in the first part of the lemma. The second part
holds because for any v, Pr[|Fv| ≤ 1/nk] ≤ 1/nk−1,
and therefore the probability that there exists a v with
|Fv| ≤ 1/nk is polynomially small in n. ut

Lemma 2.4. The number of subframes in the system is
bounded by O(n/ε), w.h.p.

Proof. For any i ∈ N0, let Si be the set of all frames with
a size in [2−i/n, 2−(i+1)/n). For each frame F ∈ Si, we
need at most k = dlog1+ε(1/n|F |)e ≤ dlog1+ε 2i+1e =
O(i/ε) subframes f0, f1, . . . , fk in the ideal setting until
|fk| = ε(1 + ε)k|F | ≥ ε/n. Hence, it follows from
Lemma 2.3 that the total number of subframes needed is
bounded by

∑log n
i=0 (2n/2i)·O(i/ε)+O(

√
n)·O(log n/ε)+

O(n/ε) = O(n/ε), w.h.p. ut

Next, we explain how to manage the tables.

2.3 Table management. For each subframe f ,
C(f) represents a multiset of nodes w with f∩I(w) 6= ∅.
The number of times a node w occurs in C(f) is called
its multiplicity in C(f) and denoted as µf (w). Initially,
µf (w) is set to the number of times I(w) crosses the
starting point of f , which is in {br · s · cic, dr · s · cie}.
Hence, given that ci ≤ 1/r for every i (which is nec-
essary to maintain fairness), it holds that µf (w) ∈
{0, . . . , s}. Afterwards, we are using the following rules
for every subframe f ⊆ Fv and w 6= v:

Rounding conditions:

1. Whenever the endpoint of I(w) moves beyond the
endpoint of f for the first time after crossing the
starting point of f , µf (w) is increased by 1.

1In the following, “w.h.p.” or “with high probability” means
a probability of at least 1− 1/nc for any constant c > 0.

2. Whenever the endpoint of I(w) moves below the
starting point of f for the first time after crossing
the endpoint of f (or after w has been introduced
to the system), µf (w) is decreased by 1.

The same rules are also applied if w = v and |I(v)| >
|Fv|. For the special case that w = v and |I(v)| ≤ |Fv|,
µf (w) is defined as the number of times I(w) crosses
the starting point of f . With these rules it holds that
whenever the endpoint of I(w) is outside of f then
µf (w) is equal to the number of times I(w) crosses f ,
and otherwise µf (w) ∈ {br · s · cic, dr · s · cie}. Hence,
together with the fact that no interval can start inside of
f , the number of times intervals cross f at the left and
right endpoints is an upper and lower bound on |C(f)|.
This allows us to prove the following property.

Lemma 2.5. For every subframe f , |C(f)| is within
(1 ± β)r · s, w.h.p., where the constant β > 0 can be
made arbitrarily small depending on the constant σ in
s.

Proof. The arguments above imply that, in order to
bound |C(f)| for any f , it suffices to consider any point
x ∈ [0, 1) representing a starting point or endpoint of
some interval I(v). We first consider the starting point
of an interval I(v).

Consider some fixed node v with starting point h(v).
For any node w in the system (including v), let the
random variable Xw be defined as Xw = bs ·r · cwc+Yw

where the binary random variable Yw is 1 if and only if
I(w) contains h(v) ds ·r ·cwe many times. Furthermore,
let X =

∑
w Xw and Y =

∑
w Yw. It certainly holds

that E[Xw] = s · r · cw for all w 6= v and that X = ds · r ·
cve+

∑
w 6=v Xw. Hence, E[X] = ds·r·cve+s·r·(1−cv) ∈

[s · r, s · r + 1]. Moreover, E[Y] ≤ E[X], and since the
starting points of the intervals are chosen independently
at random and the Yw’s are binary random variables,
it follows from the Chernoff bounds (e.g., [14]) that
Pr[|Y − E[Y]| ≥ βE[Y]] ≤ e−β2E[Y]/(2(1+β/3)) for any
β > 0. Hence, X is within (1±β)s · r, w.h.p., where the
constant β > 0 can be made arbitrarily small depending
on the constant σ in s.

For the endpoint of an interval I(v), it is easy to see
that E[X] ∈ [s · r − 1, s · r]. Hence, the same deviation
bounds can also be shown here. ut

For W = {1, . . . , n} let W` be the set of nodes
v ∈ W with cv ≥ 1/((s − 1)r) and Ws = W \ W`.
Nodes v ∈ W` are guaranteed to have µf (v) ≥ 1 in
every subframe f . For any subframe f , let C`(f) =
C(f)|W`

(i.e., the multiset containing only those nodes
in C(f) that are also in W`) and Cs(f) = C(f)|Ws . Let
a` =

∑
v∈W`

cv and as = 1− a`. A more refined version
of Lemma 2.5 is as follows.

Lemma 2.6. For any subframe f and any subset W ′
`

of W`, |C ′`(f)| is within s · r · a′` ± β|W ′
` | + O(log n),

w.h.p., where C ′`(f) = C`(f)|W ′
`

and a′` =
∑

v∈W ′
`
cv.

Furthermore, |Cs(f)| is within (1±β)s ·r ·as +O(log n),
w.h.p. In both cases, the constant β > 0 can be made
arbitrarily small depending on the constant σ in s.

Proof. Recall the definition of Xw and Yw in the proof of
the previous lemma. Applied to nodes w ∈ W ′

` it holds
that E[X] =

∑
w∈W ′

`
bs·r·cwc+E[Y] ∈ [s·r·a′`−1, s·r·a′`+

1]. Since E[Y] ≤ |W ′
` |, the first bound follows from the

fact that Pr[|Y − E[Y]| ≥ βE[Y]] ≤ e−β2E[Y]/(2(1+β/3))

for any β > 0.
The second bound follows along the same lines as

in the proof of Lemma 2.5. ut

Furthermore, the following result holds, which is
crucial for SPREAD to be redundant.

Lemma 2.7. For every subframe f there are at least r
different nodes in C(f), w.h.p., where the probability
depends on the constant σ in the stretch factor.

Proof. Let q = |W`|. If q ≥ r, then the lemma is
trivially true. So suppose that q < r. Since cv ≤ 1/r
for all v, a relative capacity of at least 1− q/r must be
covered by Ws. Hence, |Ws| ≥ (1−q/r)/(1/((s−1)r)) =
(s − 1)(r − q) and

∑
v∈Ws

|I(v)| ≥ (r · s)(1 − q/r) =
s(r − q).

Suppose that the nodes in Ws are numbered from
1 to t. Consider any fixed node v ∈ Ws and focus on
the point y implied by v’s interval I(v) = [x, y). For
any node w ∈ W let the binary random variable Xw

be 1 if and only if y ∈ I ′(w) and let X =
∑

w Xw.
Since E[Xw] = Pr[Xw = 1] = min{|I ′(w)|, 1} for all
w ∈ Ws \ {v} it holds that

E[X] = q +
∑

w∈Ws\{v}
E[Xw] = q +

∑

w∈Ws\{v}
min{|I ′(w)|, 1}

≥ q + (1− ε)s(r − q)− 1 ≥ r + (1− ε)s− 2

Since s = Θ(log N) and the starting points of the
intervals are chosen uniformly and independently at
random, it follows from the Chernoff bounds that X ≥ r
for point y, w.h.p. Since we only need to consider those
points in [0, 1) that are starting points or endpoints of
intervals I(v) in order to cover all subframes in [0, 1) and
the lowest values for E[X] are reached when focusing on
endpoints of intervals I(v) of nodes v ∈ Ws, the lemma
follows. ut

Recall hat for each subframe f , we maintain one
(and sometimes two) (s/α)× r-table Tf of r · s/α slots
which are organized into s/α groups (or columns) of size

r each. We assume that α > 0 is a sufficiently small
constant with 1/α ∈ N. Our goal is to assign the slots
of Tf to nodes in f so that the following conditions are
met:

Table conditions:

1. Every slot is assigned to (resp. owned by) exactly
one node in Cf .

2. Every node v in C(f) owns within (1± γ)µf (v)/α
many slots but at most s/α many slots in Tf for
some constant 0 < γ < 1 to be specified below.

3. Every group consists of slots belonging to different
nodes.

The γ that is sufficient to maintain the table conditions
is given in the following lemma. In this lemma, α is the
parameter used in the table size and β is the parameter
used in Lemmas 2.5 and 2.6.

Lemma 2.8. If the bounds in Lemma 2.6 are true and
α and β are sufficiently small, then conditions 1 and 2
can be met with any γ ≥ β/(1− β) + α.

Proof. Recall the bounds in Lemma 2.6 and ignore the
O(log n) terms for a moment. We consider the nodes in
W` and Ws separately, starting with W`.

Let Wh ⊆ W` be the set of all nodes v with cv large
enough so that it is guaranteed that µf (v) ≥ 1/γ for γ as
chosen in the lemma. In this case, every v ∈ Wh satisfies
(1 − γ)µf (v)/α ≤ (µf (v) − 1)/α ≤ bs · r · cv/αc and
(1+γ)µf (v)/α ≥ (µf (v)+1)/α ≥ ds·r·cv/αe. Moreover,
ds · r · cv/αe ≤ s/α. Hence, each v ∈ Wh can be given
either bs · r · cv/αc or ds · r · cv/αe many slots without
violating condition 1. This implies that the nodes in
Wh can be given slots so that the total number of slots
used by the nodes in Wh is in [bs ·r ·ah/αc, ds ·r ·ah/αe]
where ah =

∑
v∈Wh

cv. This is perfect up to an additive
1.

Next, consider the nodes in W ′
` = W` \ Wh. Let

C ′`(f) = C`(f)|W ′
`

be the multiset of nodes v ∈ C`(f)
that are not in Wh. In this case, (1 + γ)µf (v)/α < s/α
(given that s is sufficiently large), so we do not have
to worry about limiting the number of slots of v by
s/α. Let a′` =

∑
v∈W ′

`
cv. Suppose for an upper

bound on the number of slots per node that |C ′`(f)| =
s · r · a′` − β|W ′

` | (see Lemma 2.6). If φ > 0 is chosen
so that

∑
v∈W ′

`
[µf (v)/α + φ/α] ≥ s · r · a′`/α, then it

suffices to assign at most (µf (v) + φ)/α + 1 slots to
every node v ∈ C ′`(f) to cover at least an a′`-fraction of
the slots in f . Since

∑
v∈W ′

`
µf (v) = |C ′`(f)|, it holds

that
∑

v∈W ′
`
[µf (v)/α + φ/α] ≥ s · r · a′`/α if and only

if |C ′`(f)| ≥ s · r · a′` − φ|W ′
` |, so we have to choose

φ ≥ β for this. For a lower bound, suppose that
|C ′`(f)| = s · r · a′` + β|W ′

` |. If φ > 0 is chosen so
that

∑
v∈W ′

`
[µf (v)/α− φ/α] ≤ s · r · a′`/α, then at least

(µf (v) − φ)/α − 1 slots can be assigned to every node
v ∈ C ′`(f) to cover at most an a′`-fraction of the slots in
f . For this we have to choose φ so that φ ≥ β. Together
with the fact that µf (v) ≥ 1 for all v ∈ C ′`(f) it follows
that γ = β + α is sufficient so that (µf (v) + β)/α + 1 ≤
(1+γ)µf (v)/α and (µf (v)−β)/α−1 ≥ (1−γ)µf (v)/α.

Finally, consider the nodes in Ws. Suppose for
an upper bound on the number of slots per node that
|Cs(f)| = (1 − β)s · r · as (see Lemma 2.6). If φ > 0 is
chosen so that

∑
v∈Ws

(1+φ)µf (v)/α ≥ s ·r ·as/α, then
it suffices to assign at most (1 + φ)µf (v)/α + 1 slots to
every node v ∈ Cf to cover an as-fraction of the slots
in f . Since

∑
v∈Ws

µf (v) = |Cs(f)|, we have to choose
φ so that (1 + φ)(1− β)s · r · as/α ≥ s · r · as/α, which
works for φ ≥ 1/(1 − β) − 1 = β/(1 − β). For a lower
bound, suppose that |Cs(f)| = (1 + β)s · r · as. If φ > 0
is chosen so that

∑
v∈Ws

(1 − φ)µf (v)/α ≤ s · r · as/α,
then at least (1−φ)µf (v)/α−1 slots can be assigned to
every node v ∈ Cs(f) without exceeding an as-fraction
of the slots in f . For this we have to choose φ so that
(1 − φ)(1 + β)s · r · as/α ≤ s · r · as/α which works for
φ ≥ 1−1/(1+β) = β/(1+β). Hence, γ ≥ β/(1−β)+α
is sufficient for both cases.

Finally, notice that there is this O(log n) term in the
bounds in Lemma 2.6 that we ignored so far. However,
whenever this term is dominant for a set of nodes in
some subframe, the sum of their capacities is at most δ
for some constant δ > 0 that can be made arbitrarily
small depending on σ. Hence, since we are considering
only three sets of nodes, those sets of nodes where the
O(log n) term is negligible (and can therefore be covered
by β) represent a total capacity of at least 1−2δ, which
is sufficient to fill all slots just with these nodes, or
leave enough space for the other nodes, as long as δ
is sufficiently small compared to α and β. ut

If conditions 1 and 2 are true, also condition 3
can be met. To show this, consider the slots to be
numbered row-wise from 1 to r · s/α by giving slot
(i, j) in group i the number (j − 1) · s/α + i. Assign
the slots to the nodes so that each node v ∈ C(f)
owns a consecutive sequence of slots. Since every node
owns at most s/α slots, no group can have two slots
owned by the same node, which proves our claim. The
challenge, of course, will be to maintain these conditions
as the system changes without rearranging too many
slot assignments. Before we show how to do this, we
prove that the table conditions allow us to maintain
fairness.

Lemma 2.9. If the table conditions are met, then for

every node v in the system and every data item d, Pr[v
stores a copy of d] is in [(1−γ)(1−ε)rcv, (1+γ)(1+ε)rcv]
for the γ in condition 2 and ε as chosen for the interval
rounding.

Proof. Consider any node v and data item d. Let
p = |I ′(v)| mod 1, where I ′(v) is the rounded form of
I(v). For an area of size p in [0, 1), v has a multiplicity
of d|I ′(v)|e, and for the remaining area of size (1 − p)
in [0, 1), v has a multiplicity of b|I ′(v)|c. Moreover,
it follows from the table conditions that for any node
v in some subframe f , Pr[v selected by a data item] ∈
[(1−γ)µf (v)/s,min{(1+γ)µf (v), s}/s]. Hence, it holds
for data item d that

Pr[v stores a copy of d]

≥ p · (1− γ)d|I ′(v)|e
s

+ (1− p) · (1− γ)b|I ′(v)|c
s

= (1− γ) · |I
′(v)|
s

≥ (1− γ)(1− ε)r · cv

Similarly, it holds that Pr[v stores a copy of d] ≤
(1 + γ)(1 + ε)r · cv, which implies the lemma. ut

Since ε > 0 and γ > 0 can be made arbitrarily
small, the lemma implies that SPREAD can be made
fair. Next we show that SPREAD can also be made
adaptive.

2.4 Amortized adaptivity. We start with amor-
tized adaptivity, i.e., we show how to perform updates
so that movements of data copies can always be charged
to capacity changes in the past.

SPREAD does not need to perform any adaptations
of the slots as new data items are added or old data
items are removed from the system since Lemma 2.9
implies that the data items in the system will remain
fairly distributed among the nodes. Hence, it remains
to describe how to react to changes in the capacities of
the nodes.

Suppose that the capacities of the nodes change
from c1, . . . , cn to c′1, . . . , c

′
n. For each node identifier

v that has not been used before (i.e., n increases), some
subframes may have to be cut into smaller subframes
that take over the tables of the previous subframes.
Hence, if the previous subframes satisfied the table
conditions, the new ones will also do so. Our rounding
conditions may then require updates to these tables,
which can be charged to past capacity changes as for the
other cases below. Afterwards, we start with adapting
the intervals I(v) to c′1, . . . , c

′
n. This may cause changes

in C(f) of a subframe f , which may require updates in
its table (or tables). Let us call a subframe f dirty if it is
in Fv, contains the endpoint of I(v) and |I(v)| ≤ |Fv|.

Otherwise, it is called clean. First, we describe how
to update the table of a clean subframe, and then we
consider dirty subframes.

Updating a clean subframe f . Let C(f) be the
multiset of nodes in f before the change and C ′(f) be
the multiset of nodes in f after the change in capacities.
If C ′(f) 6= C(f), we go through the following stages.

1. Pairing stage: Suppose that the total decrease
in the multiplicities of nodes in C(f) is δd and
the total increase in the multiplicities of nodes
in C(f) is δi. Then we can identify |δi − δd|
pairs of nodes (v, w) where v wants to decrease
its multiplicity whereas w wants to increase its
multiplicity. For each such pair, we set µf (v) :=
µf (v)− 1 and µf (w) := µf (w)+1 and then change
slot assignments until table condition 2 is satisfied
for v and w. For each such slot reassignment, we
distinguish between three cases. If both v and w
violate condition 2, then a slot of v is given to w.
If only v violates condition 2, we give a slot of v
to any node w′ who can still take a slot without
violating condition 2 (we will see below that such
a node w′ can always be found, w.h.p.). If only w
violates condition 2, we give a slot from any node
v′ who can lose a slot without violating condition
2 to w. For each slot x given from some node u to
some node u′, we use the following slot switching
strategy to preserve table condition 3.
Switching strategy: If x belongs to some group
g in which no other slot is assigned to u′, we are
done. Otherwise, there must be a group g′ with no
slot assigned to u′ since otherwise u′ would have
more than s/α slots at the end, violating condition
2. Since condition 3 was true before the movement,
there must be a slot x′ in g′ that is assigned to a
node u′′ that has no slot in g. Then switch slots x
and x′ among u′ and u′′, which repairs condition 3.

2. Movement stage: After the pairing stage, we
only have nodes left that all want to decrease or
increase their multiplicities. We consider these
node by node. For each node v among these, we
update v’s multiplicity and then either move slots
to v or away from v using the slot switching strategy
in the pairing stage, if necessary, until v satisfies
condition 2.

Of course, it is not obvious that suitable slots can always
be found for the reassignments (besides the pairing stage
in which the nodes v and w still violate condition 2), but
the following lemma implies that this is possible. In it,
C ′′(f) represents the current multiset during the process
of moving from C(f) to C ′(f).

Lemma 2.10. In any situation in which |C ′′(f)| is
within |C(f)| and |C ′(f)|, conditions 1 and 3 are true
and at most one node violates condition 2, condition 2
can be repaired for it so that all table conditions are met,
w.h.p.

Proof. For any node w ∈ C ′′(f), let sw be the number
of slots w has in the table Tf . Let v be the node that
is violating condition 2. Then v either needs additional
slots or has to give up slots. Suppose first that v needs
additional slots. In this case, sv < (1 − γ)µf (v)/α. As
long as there is a node w with sw−1 ≥ (1−γ)µf (w)/α,
we can move a slot from w to v until sv ≥ (1 −
γ)µf (v)/α. Then we repaired condition 2 for v without
violating the condition 2 for any of the other nodes.

Suppose, however, that we reach a point in which
sv < (1 − γ)µf (v)/α but there is no node w any more
with sw − 1 ≥ (1 − γ)µf (w)/α. In this case, the total
number of slots occupied by the nodes in C ′′(f) is less
than

(1− γ)µf (v)/α +
∑

w 6=v

[(1− γ)µf (w)/α + 1]

<
1− γ

α

∑

w∈C′′(f)

µf (w) + |C ′′(f)|

=
(

1− γ

α
+ 1

)
|C ′′(f)|

If γ ≥ β/(1 − β) + α, it follows from Lemma 2.5 that
this is at most

1− 2β

α(1− β)
· |C ′′(f)| ≤ 1− 2β

α(1− β)
· (1 + β)s · r

w.h.p. It holds that (1−2β)(1+β) = 1−β−2β2 < 1−β,
so

∑
w sw < s · r/α, which is a contradiction since all

slots must be owned by a node at any time. Hence, it
will always be possible to reassign slots so as to repair
condition 2 for v in this case.

Next, we consider the case that v needs to give up
slots. In this case, v gets stuck if sv > (1 + γ)µf (v)/α
and for all other nodes w, sw + 1 > (1 + γ)µf (w)/α.
Then the total number of slots occupied by the nodes
in C ′′(f) is more than

(1 + γ)µf (v)/α +
∑

w 6=v

[(1 + γ)µf (w)/α− 1]

>
1 + γ

α

∑

w∈C′′(f)

µf (w)− |C ′′(f)|

≥
(

1
α(1− β)

+ 1
) ∑

w∈C′′(f)

µf (w)− |C ′′(f)|

≥ 1
α(1− β)

· (1− β)s · r = s · r/α

w.h.p. This, however, is a contradiction. Hence, slots
from v can be reassigned to other nodes until condition
2 holds for v. ut

Next, we bound the number of slot reassignments.
A step in the movement or pairing stage is defined
as the process of fixing the table conditions after the
multiplicity of a node or pair of nodes has changed by
1.

Lemma 2.11. In each step of the pairing or movement
stage, at most 2(1 + γ)/α slots have to be reassigned in
order to repair the table conditions.

Proof. First, consider the movement stage. Suppose
that the multiplicity of some node v increases by 1. We
know that for the old multiplicity µf (v) of v it holds that
sv ≥ (1− γ)µf (v)/α. Hence, at most 1/α slots have to
be moved to v to satisfy sv ≥ (1−γ)(µf (v)+1)/α. Since
each slot movement may require a flip with another
slot to repair condition 3, the total number of slot
reassignments is at most 2/α in this case.

For the case that the multiplicity of some node
v decreases by 1, at most 2(1 + γ)/α slots have to
be reassigned. The worst case happens if µf (v) was
previously 1 and v had (1 + γ)/α slots.

Next, consider a step of the pairing stage. Suppose
that the multiplicity of node v decreases by 1 while
the multiplicity of w increases by 1. Then v has to
give up at most (1 + γ)/α slots while w has to get at
most 1/α slots in order to repair condition 2. In any
step of repairing condition 2 for v and/or w (v gives
a slot to w, or v gives up a slot, or w gains a slot), at
most 2 slot reassignments are necessary, so altogether at
most 2(1+γ)/α slot reassignments are needed to repair
condition 2 for v and w. ut

Hence, given a total change in the multiplicities of
the nodes by µ, at most 2µ(1 + γ)/α slot reassignments
are necessary to get from C(f) to C ′(f). Given k slot
reassignments, the probability that a specific copy of
a data item d with g1(d) ∈ f needs to be replaced is
equal to k/(r ·s/α). Thus, the expected number of copy
movements is at most

2µ(1 + γ)/α

r · s/α
· |f | · r|D| = 2(1 + γ)µ|f |

s
· |D|

where D ⊆ U is the set of data items that are stored
in the system. A change in multiplicities by µ can be
charged to a capacity change of c(f) ≥ |f |µ/(s · r) with
respect to f in the past, and the way we perform interval
rounding makes it possible that every capacity change
is charged at most once. Thus, with respect to c(f), the

expected number of copy movements is at most

2(1 + γ)s · r · c(f)
s

· |D| = 2(1 + γ)c(f) · r|D|
According to Fact 1.1, a capacity change of c(f) requires
the replacement of at least c(f) · r|D|/2 copies for
the copy distribution to remain fair with respect to
f . Hence, for clean subframes SPREAD is amortized
4(1 + γ)-adaptive.

Updating a dirty subframe f . If f is dirty, we
maintain two tables for f . One table, T1, for the interval
f1 from the starting point of f till the endpoint of I(v),
and one table, T2, for the interval f2 from the endpoint
of I(v) till the endpoint of f . The multisets C(f1) and
C(f2) are equal to C(f) with the only difference that
C(f1) contains a copy of node v while C(f2) does not
contain v. Our goal is to make sure that T1 and T2 differ
in at most 2(1 + γ)/α slots, which we call the proximity
condition. This is ensured by the following strategy.

Suppose that C(f) stays the same but the size
of I(v) changes. Then we only update f1 and f2

accordingly and leave the tables T1 and T2 as before,
which satisfies the proximity condition. If C(f) only
changes because the endpoint of I(v) enters f from
below, then T2 inherits the table of f , and the table for
f1 is obtained by applying slot reassignments for v to
T2 until the table conditions are met for f1. According
to Lemma 2.11, this requires the reassignment of at
most 2(1 + γ)/α slots, so the proximity condition holds
afterwards. If C(f) only changes because the endpoint
of I(v) is moving below f , then T2 is chosen as the table
for f . Similar solutions can be found if the endpoint of
I(v) enters or leaves f from above.

In all other cases, we first ignore a potential change
in I(v), which means that the sizes of f1 and f2 remain
the same. We then adapt the table Ti of the interval
fi of largest size among f1 and f2 as described for
the table of a clean subframe f to get from C(f) to
C ′(f) (ignoring changes in C(f) due to I(v) entering
or leaving f), and then we construct the table of the
other interval by performing at most 2(1+γ)/α further
slot reassignments in order to remove or add slots for v.
Afterwards, we update the sizes of f1 and f2 if necessary
(i.e., if I(v) has changed).

Next, we bound the adaptivity of SPREAD for
dirty subframes. Suppose that C(f) stays the same
but the size of I(v) changes by some ` in f . Then
this can be charged to a change in capacity of v of
c = `/(s · r). Hence, the proximity condition ensures
that the expected number of copy movements is at most

` · 2(1 + γ)/α

r · s/α
· r|D| = 2(1 + γ)c · r|D|

which implies that, with respect to c, SPREAD is
4(1 + γ)-adaptive in this case.

If C(f) only changes because the endpoint of I(v)
enters f from below or is moving below f , and this is
associated with a change of I(v) of length ` with respect
to f , then it follows analogously to the first case that
SPREAD is 4(1 + γ)-adaptive.

It remains to consider any remaining case. Let µ ≥
1 be the total change in multiplicities in C(f) (ignoring
the change caused by I(v)). W.l.o.g., suppose that |f1|
is larger than |f2|. Then at most 2µ(1 + γ)/α slots are
reassigned in T1 and at most (µ+2)2(1+γ)/α slots are
reassigned in T2. The latter bound holds because T2

differs in at most 2(1 + γ)/α slots from T1 before and
after the reassignments. Since a total change of µ can
be charged to a capacity change of c(f) ≥ |f |µ/(s · r)
with respect to f in the past, |f1| ≥ |f2|, and µ ≥ 1,
it follows from the arguments for clean subframes that
the expected number of copy movements due to these
changes is at most

(
µ · 2(1 + γ)/α

r · s/α
+

(µ + 2)2(1 + γ)/α

r · s/α

) |f |
2
· r|D|

≤ 2µ|f | · 2(1 + γ)/α

r · s/α
· |D|

≤ 4(1 + γ)s · r · c(f)
s

· |D| = 4(1 + γ)c(f) · r|D|

For any additional changes due to I(v), SPREAD is
4(1+γ)-adaptive. Hence, overall SPREAD is amortized
8(1 + γ)-adaptive for dirty subframes. Summing up
the adaptivity bounds over all subframes results in an
amortized adaptivity of 8(1 + γ).

2.5 Adaptivity. In order to get from amortized
adaptivity to adaptivity, we replace the deterministic
rounding rules for the intervals above by a randomized
rounding rule. More specifically, we choose an addi-
tional (pseudo-)random hash function h′ : V → [0, 1),
and for every interval I(w) and subframe f = [x, y) in
Fv with v 6= w (or |I(w)| ≥ |Fw|), we check the follow-
ing:

Randomized rounding conditions:

1. Whenever the endpoint of I(w) crosses x+h′(v)/|f |
mod 1 from below, µf (w) is increased by 1.

2. Whenever the endpoint of I(w) crosses x+h′(v)/|f |
mod 1 from above, µf (w) is decreased by 1.

With this rule we obtain the following result:

Lemma 2.12. For any capacity change, SPREAD is
8(1 + γ)-adaptive.

Proof. First, suppose that n does not change. Consider
any capacity change in the system, and for any node
v let δI(v) be the interval representing the difference
between I(v) before and I(v) after the change. Suppose
that the starting point of δI(v) is in some subframe f
and the endpoint of δI(v) is in some subframe f ′.

First, consider the case that δI(v) ⊆ f , i.e., f =
f ′. Then it is easy to check that the probability
that µf (v) increases or decreases by 1 is equal to
|δI(v)|/|f |. We know from above that an increase or
decrease of a multiplicity by 1 in a subframe f requires
the replacement of an expected number of at most
(4(1 + γ)|f |/s) · |D| copies in the system. Since cv

changed by δcv = |δI(v)|/(r · s), this means that the
expected number of copies replaced due to v is at most
(|δI(v)|/|f |) · (4(1 + γ)|f |)/s · |D| = 4(1 + γ)δcv · r|D|.
For δI(v) 6⊆ f , similar arguments also yield that the
expected number of copies replaced due to v is at most
4(1 + γ)δcv · r|D|.

If n increases, then for any rounded I(v) with
endpoint in some subframe f = [x, y) before the
increase, I(v) is only rounded again, applying the new
decomposition, if I(v) ⊂ I ′(v) and the endpoint of
I(v) passes x + h′(v)/|f | or y, or if I ′(v) ⊂ I(v) and
the endpoint of I(v) passes x or x + h′(v)/|f |, which
preserves our adaptivity bound. ut

Combining all of the results in this section yields
Theorem 1.1. Note that with the help of Chernoff
bounds the adaptivity bound can also be shown to hold
w.h.p. (up to minor order terms) if the total capacity
change is ω(ϕ log n), where ϕ is an upper bound on the
maximum size of a subframe in the system. Hence, the
smaller the subframes, the smaller will be the deviation
from the expected number of replaced copies.

2.6 Variable number of copies per data item. If
the number of copies per data item varies but is upper
bounded by r, then we just need to slightly adapt our
storage strategy. For any data item with r′ ≤ r copies,
we first select a group of r distinct nodes as before and
then store r′ copies among r′ of these nodes by selecting
a (pseudo-)random starting node v in the group (via
some additional hash function) and then storing copies
at the subsequent r′ nodes in the group (where we treat
the group as a ring). It is not difficult to show that this
preserves all the properties shown above for data items
with redundancy exactly r.

References

[1] LH*RS: A high-availability scalable distributed data
structure using reed solomon codes. In SIGMOD
Conference, pages 237–248, 2000.

[2] A. Brinkmann, S. Effert, F. M. auf der Heide, and
C. Scheideler. Dynamic and redundant data place-
ment. In Proc. of the IEEE International Conference
on Distributed Computing Systems (ICDCS), 2007.

[3] A. Brinkmann, K. Salzwedel, and C. Scheideler. Effi-
cient, distributed data placement strategies for storage
area networks. In Proc. of the 12th ACM Symposium
on Parallel Algorithms and Architectures (SPAA’00),
pages 119–128, 2000.

[4] A. Brinkmann, K. Salzwedel, and C. Scheideler. Com-
pact, adaptive placement schemes for non-uniform dis-
tribution requirements. In Proc. of the 14th ACM
Symposium on Parallel Algorithms and Architectures
(SPAA’02), pages 53–62, 2002.

[5] R. J. Enbody and H. C. Du. Dynamic hashing schemes.
ACM Comput. Surv., 20(2):850–113, 1988.

[6] R. Honicky and E. Miller. A fast algorithm for online
placement and reorganization of replicated data. 2003.

[7] R. J. Honicky and E. L. Miller. Replication Under
Scalable Hashing: A Family of Algorithms for Scalable
Decentralized Data Distribution. In Proceedings of the
18th IPDPS Conference, 2004.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for reliev-
ing hot spots on the World Wide Web. In Proc. of the
29th ACM Symposium on Theory of Computing, pages
654–663, 1997.

[9] W. Litwin, J. Menon, and T. Risch. LH* schemes
with scalable availability. Technical Report RJ 10121
(91937), IBM Research, Almaden Center, May 1998.

[10] W. Litwin and M.-A. Neimat. High-availability LH*
schemes with mirroring. In Conference on Cooperative
Information Systems, pages 196–205, 1996.

[11] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH*
- a scalable, distributed data structure. ACM Trans.
Database Syst., 21(4):480–525, 1996.

[12] W. Litwin and T. Risch. LH*G: A high-availability
scalable distributed data structure by record grouping.
IEEE Transactions on Knowledge and Data Engineer-
ing, 14(4):923–927, 2002.

[13] C. McDiarmid. On the method of bounded differ-
ences. In J. Siemons, editor, Surveys in Combinatorics.
London Mathematical Society Lecture Note Series 141,
Cambridge University Press, 1989.

[14] C. McDiarmid. Concentration. In M. Habib, C. Mc-
Diarmid, J. Ramirez-Alfonsin, and B. Reed, editors,
Probabilistic Methods for Algorithmic Discrete Mathe-
matics, pages 195–247. Springer Verlag, Berlin, 1998.

[15] P. Sanders. Reconciling simplicity and realism in
parallel disk models. In Proc. of the 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 67–
76. SIAM, Philadelphia, PA, 2001.

[16] C. Schindelhauer and G. Schomaker. Weighted dis-
tributed hash tables. In SPAA ’05: Proceedings of the
seventeenth annual ACM symposium on Parallelism
in algorithms and architectures, pages 218–227, New
York, NY, USA, 2005. ACM Press.

