
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦◦ ◦◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Lehrstuhl für Effiziente Algorithmen

Fast Structure Searching for Computational Proteomics

Hanjo Täubig

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Arndt Bode

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Ernst W. Mayr

2. Univ.-Prof. Dr. Dr. h.c. mult. Wilfried Brauer, em.

Die Dissertation wurde am 27.02.2006 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 17.04.2007 angenommen.

ii

Document Classi�cation according to ACM CCS (1998)

Categories and subject descriptors:

F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems�Pattern Matching

H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing�Dictionaries, Indexing methods

H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval�Clustering, Information �ltering, Search process

J.3 [Computer Applications]:
Life and Medical Sciences�Biology and Genetics

General Terms: Algorithms, Design, Measurement, Performance

Abstract

In 2003 the Human Genome Project and Celera Genomics celebrated the completion of
sequencing the human genome. Although the project was a great success, it had become
apparent that knowledge of the sheer sequence of amino acids would not allow to make
signi�cant progress in curing any illness. The usefulness of the results and methods was
mostly restricted to detecting predisposition to a variety of diseases, but the responsible
gene did not provide much information on the real reason of the disfunction. The key
to a better understanding of the functional relations must therefore be the structure of
the agents that are participating in the respective processes. In the majority of cases,
these reactions involve biochemical macromolecules like proteins or nucleic acids. Their
structural diversity, created by alternative splicing and post-translational modi�cations, is
a prerequisite for performing the vast number of di�erent functions, that depend on the
chemical speci�city of the reactants.

Starting in the seventies, molecular structures of polypeptides and nucleic acids (de-
termined by x-ray crystallography and NMR spectroscopy) were deposited in the Protein
Data Bank (PDB), which is the primary source for structure information used in today's
molecular biology and structural genomics research. Since its �rst days, the PDB has wit-
nessed a rapid growth at exponential rates. Today, it holds more than 30.000 structures,
and the size of the database exceeds twenty gigabytes. These huge numbers emphasize the
urgent need for fast methods allowing to search the database of existing structures.

This thesis aims at exploiting the advantages of text indexing methods commonly used
in pattern matching for solving problems in structural genomics and computational pro-
teomics. In particular, we apply su�x trees to problems related to structural databases of
biopolymers like RNA and proteins.

The main contribution is a novel approach for fast searching in huge databases like the
PDB. While existing methods provide only search times in the order of minutes, hours,
or even days, our approach allows to perform standard queries within seconds. The data
structure is based on a generalized su�x tree which is extended by a method for approx-
imate matching of special adapted alphabets. These alphabets rely on the discretization
of translation- and rotation-invariant measures that represent the structure of the protein
backbone. The method was evaluated by applying structural queries to the PDB and
comparing the results to established tools in this area. On the one hand, the experiments
demonstrate a signi�cant reduction of the query time while comparable results are pro-
duced. On the other hand, several structures have been found by our approach that are

iii

iv

missing in the result list of other tools because they are �ltered out by sequence-based
heuristics.

Another contribution is a method for identifying frequent motifs and for partitioning
a database of protein structures according to structural similarity which is, in contrast to
currently used methods, fully automatic. The approach is based on the fast computation of
the (sparse) similarity matrix which yields a partition using a spectral clustering algorithm.

Acknowledgments

To write this thesis would have been absolutely impossible without the permanent help of
a couple of people.

First of all, I want to thank my advisor Ernst Mayr, for the invaluable support through-
out the last years. I am thankful for a lot of insight into theoretical computer science and
for a lot of freedom to realize my own ideas.

I am deeply indebted to the current and former members of the E�cient Algorithms
Group, in particular Stefan Eckhardt, Jens Ernst, Alexander Hall, Volker Heun, Klaus
Holzapfel, Sven Kosub, and Thomas Schickinger. My colleagues Arno Buchner and Jan
Griebsch deserve special thanks, this work would not exist without their support. I am
grateful to Moritz Maaÿ and Johannes Nowak for fruitful discussions and for being true
friends. Moreover, I am thankful to Ernst Bayer for generous technical support.

For great support regarding the creation of graphics, I am thankful to my dear friend
Alexander Mellich.

Furthermore, I want to thank my former teachers Michael Fothe, Udo Weitz, Hans-
Joachim Brenner, Bernd Licht, Karl-Heinz Nieÿler, and Walter Schreiter for teaching me
the fundamentals of computer science, mathematics, and chemistry.

Also, I am grateful to Uwe Römers and Anselm Kusser for excellent work on the protein
structure project.

For the unbelievable and great support during the last hard days of writing, I am
indebted to my family. The help of my brother Holger and my father Klaus Täubig pushed
me forward and saved the day.

Last, but not least, I want to thank Anja Fischer for being patient and for believing in
me all the time. You are my sunshine. Thank you so much for your love.

v

vi

Contents

Preface xix

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Human Genome Project . 1
1.1.2 The Importance of the Proteome 2
1.1.3 Sequence Determines Structure Determines Function 2
1.1.4 Determination of Structure . 2

1.2 Structural Bioinformatics and
Computational Proteomics . 3

2 Biochemical Foundation 5
2.1 Biopolymers . 5
2.2 Proteins . 5

2.2.1 Amino Acids as Basic Modules of Proteins 5
2.2.2 Historic Background . 6
2.2.3 Formation of the Backbone . 8
2.2.4 Protein Structure . 11
2.2.5 Secondary Structure Elements . 16
2.2.6 Supersecondary Structure, Motifs, and Domains 17
2.2.7 Comment . 20
2.2.8 Further Reading . 20
2.2.9 Protein Folding . 20
2.2.10 Protein Functions . 20

2.3 Nucleic Acids and the Central Dogma . 20
2.3.1 DNA and RNA . 20
2.3.2 Protein Biosynthesis . 22
2.3.3 DNA and RNA Structure . 23

2.4 The Protein Data Bank . 23

3 Algorithmic Foundation 29
3.1 Pattern Matching . 29
3.2 Atomic Σ+-Trees (Tries) . 31

vii

viii CONTENTS

3.3 Compact Σ+-Trees (PATRICIA Trees) . 33
3.4 Su�x Tries and Su�x Trees . 34

4 Searching in Protein Structure Databases 37
4.1 Previous Work on Structure Searching . 37
4.2 Drawbacks of Current Methods . 40

4.2.1 Text Searching . 41
4.2.2 Searching Amino Acid Sequences 42

4.3 Evaluation of Service Quality . 42
4.4 The Polypeptide Angles Su�x Trees . 43

4.4.1 Construction of the Su�x Tree . 43
4.4.2 Generalized Su�x Trees . 49
4.4.3 Implementation Issues . 50

4.5 Structure and Feature Representations . 55
4.5.1 Computation of Bond Angles . 55
4.5.2 Formal De�nition and Computation of Torsion Angles 55
4.5.3 Angle Distributions . 56

4.6 Measures of Protein Similarity . 67
4.6.1 String-Based Similarity Measures 67
4.6.2 Distance-Based Similarity Measures 67
4.6.3 Angle-Based Similarity Measures 71
4.6.4 The Arithmetic String Distance . 73

4.7 Structure Searching via Encoded Backbones 77
4.7.1 Less (Information) is More: The Structure Alphabet 77
4.7.2 Construction of the Polypeptide Angles Su�x Tree 78
4.7.3 Properties of the PAST . 80
4.7.4 Exact Searching . 81
4.7.5 Finding the Longest Common Substructure 84
4.7.6 Tolerant Searching . 86
4.7.7 Searching with Insertions and Deletions 88

4.8 Applications . 90
4.8.1 Zinc Fingers . 90
4.8.2 Searching Zinc Fingers of the CCHC-Type 90
4.8.3 Searching Classic Zinc Fingers . 92
4.8.4 Other Applications . 100

5 Motifs and Classi�cation 105
5.1 Identi�cation of Motifs . 105

5.1.1 Previous Work on Motif Detection 105
5.1.2 Computation of Average Structures 106
5.1.3 Extraction of Frequent Substructures 110

5.2 Protein Structure Classi�cation . 113
5.2.1 The SCOP Database . 113

CONTENTS ix

5.2.2 The CATH Database . 114
5.2.3 Remarks . 115

5.3 Containedness and Similarity . 115
5.4 Results . 116

6 Conclusion 117

A List of PAST Query Results 119

B List of PROSITE Entries 127

C List of SCOP Entries 129

D List of CATH Entries 131

E List of Abbreviations / Acronyms 133

Bibliography 135

Glossary 159

Index 161

x CONTENTS

List of Tables

2.1 Typical bond lengths of C and N . 9
2.2 Characteristics of di�erent helices . 16
2.3 The main functions of proteins. 21
2.4 The genetic code that translates a codon into an amino acid. 23
2.5 The di�erent types of RNA. 24

4.1 Overview of Protein Structure Comparison and Searching Tools 38
4.2 Di�erent types of variable angles. 73
4.3 Statistical data of the angles extraction process for the PDB. 78
4.4 Search test for the exact search. 85
4.5 Hits from the search for zinc �ngers of the CCHC type. 91
4.6 Query comparison: time and number of results for di�erent tolerances using

α-angles. 93
4.7 Query comparison: time and number of results for di�erent tolerances using

ψ/ϕ-angles. 94
4.8 Query comparison: time and number of results for di�erent tolerances using

OCCO-angles. 94
4.9 Coverage of PROSITE, CATH, and SCOP entries compared for di�erent

tolerances using α-angles. 96
4.10 Cross comparison of PROSITE, CATH, and SCOP. 97
4.11 Query comparison between SPASM and PAST. 98
4.12 Query comparison: time and number of results for di�erent alphabet sizes

using α-angles. 99
4.13 Coverage of PROSITE, CATH, and SCOP entries compared for di�erent

alphabet sizes using α-angles. 99
4.14 Sequences not contained in the results of PROSITE, CATH and SCOP. . . 101
4.15 Coverage of PROSITE, CATH, and SCOP entries compared for di�erent

tolerances using ψ/ϕ-angles. 102
4.16 Coverage of PROSITE, CATH, and SCOP entries compared for di�erent

tolerances using OCCO-angles. 103

5.1 Classi�cation scheme of SCOP and CATH. 115

xi

xii LIST OF TABLES

B.1 Zinc �ngers that match the PROSITE domain pro�le (matrix) PS50157. . 128

C.1 SCOP entries of the superfamily 'C2H2 and C2HC zinc �ngers'. 129
C.2 SCOP entries of the superfamily 'C2H2 and C2HC zinc �ngers' (continued). 130

D.1 Classi�cation of Zinc Fingers in the CATH hierarchy. 132

List of Figures

2.1 Schematic structure of amino acids. 6
2.2 Classi�cation of the 20 proteinogenic amino acids. 7
2.3 Enantiomers of an amino acid. 8

(a) L-amino acid . 8
(b) D-amino acid . 8

2.4 The peptide bond. 9
(a) Mesomeric structures. 9
(b) Delocalized π-bond. 9

2.5 The plane of the peptide group. 9
(a) The trans conformation. 9
(b) The cis conformation. 9
(c) The peptide planes intersect each other at the Cα atoms. 9

2.6 Sample bond length histogram between C and N atoms of the PDB �le 1d2r. 10
2.7 The general de�nition of torsion angles. 10
2.8 The backbone torsion angles ψ and ϕ. 11

(a) Counting-based numbering scheme 11
(b) Cα-oriented numbering scheme . 11

2.9 The protein structure hierarchy. 12
(a) Primary structure. 12
(b) Secondary structure (helices). 12
(c) Secondary structure (sheets). 12
(d) Tertiary structure. 12
(e) Quaternary structure. 12

2.10 Visual comparison of the di�erent helix types. 13
(a) 310-helix . 13
(b) α-helix . 13
(c) π-helix . 13

2.11 Examples of quaternary structure. 14
(a) D-amino acid aminotransferase from thermophilic Bacillus sp. 14
(b) KDPG aldolase from Escherichia coli 14
(c) L-lactate dehydrogenase from Bacillus stearothermophilus 14
(d) Cholera toxin B from Vibrio cholerae 14

2.12 Examples of quaternary structure (continued). 15

xiii

xiv LIST OF FIGURES

(a) Lateral view of the 20S core protease particle of the proteasome . . . 15
2.13 The H-bond length of the 310- and the α-helix. 18

(a) Helix of H-bond type (i, i+ 3), or 310-helix resp. 18
(b) Helix of H-bond type (i, i+ 4), or α-helix resp. 18

2.14 The H-bond length of the π- and the (i, i+ 6)-helix. 19
(a) Helix of H-bond type (i, i+ 5), or π-helix resp. 19
(b) Helix of H-bond type (i, i+ 6) . 19

2.15 The DNA- and RNA-bases. 24
2.16 The nucleotides of DNA and RNA. 25
2.17 The principal structure of DNA and RNA. 26
2.18 Length histogram of the Protein Data Bank. 27
2.19 Growth of the Protein Data Bank. 28

(a) Linear scale . 28
(b) Logarithmic scale . 28

3.1 The atomic tree (trie). 31
3.2 The atomic tree (trie) with sentinel. 32
3.3 A compact Σ+-tree example . 33
3.4 The compact Σ+-tree. 34
3.5 The su�x trie and the su�x tree. 35

(a) The su�x trie for the word ananas. 35
(b) The su�x tree for the word ananas. 35
(c) The su�x tree for the word banana$. 35

4.1 A generalized su�x tree example. 49
4.2 Generalized su�x tree for the strings aba and abba. 50
4.3 Torsion angle classi�cation by Klyne and Prelog. 55

(a) periplanar / clinal . 55
(b) syn / anti . 55
(c) positive / negative . 55
(d) scheme . 55

4.4 Torsion angle histogram of the PDB (ϕi vs. ψi) 58
(a) 3D-histogram . 58
(b) Histogram map . 58
(c) Bounded 3D-histogram . 58
(d) Contour plot . 58

4.5 Ramachandran-like angle histogram of the PDB (ϕi vs. ψi+1) 59
(a) 3D-histogram . 59
(b) Histogram map . 59
(c) Bounded 3D-histogram . 59
(d) Contour plot . 59

4.6 Histograms of the virtual Cα-bond and torsion angles of the PDB. 60
(a) Histogram of the virtual bond angle τi = ^(Cα

i , C
α
i+1, C

α
i+2) 60

LIST OF FIGURES xv

(b) Histogram of the virtual torsion angle αi = � (Cα
i , C

α
i+1, C

α
i+2, C

α
i+3) . 60

4.7 Histogram of the virtual bond angles (τi, αi) in the PDB. 61
(a) Surface histogram of (τi, αi) . 61
(b) Color plot histogram of (τi, αi) . 61

4.8 Histogram of the virtual bond angles (τi, αi) in the PDB (continued). . . . 62
(a) Bounded surface histogram of (τi, αi) 62
(b) Contour plot of (τi, αi) . 62

4.9 Histogram of the virtual bond angles (τi+1, αi) in the PDB. 63
(a) Surface histogram of (τi+1, αi) . 63
(b) Color plot histogram of (τi+1, αi) . 63

4.10 Histogram of the virtual bond angles (τi+1, αi) in the PDB. 64
(a) Bounded surface histogram of (τi+1, αi) 64
(b) Contour plot of (τi+1, αi) . 64

4.11 Histogram of the OCCO virtual torsion angles in the PDB. 65
4.12 Histogram of the backbone torsion angles α, β, γ, δ, ε, and ζ of the nucleic

acids contained in the PDB. 66
(a) Histogram of torsion angle α . 66
(b) Histogram of torsion angle β . 66
(c) Histogram of torsion angle γ . 66
(d) Histogram of torsion angle δ . 66
(e) Histogram of torsion angle ε . 66
(f) Histogram of torsion angle ζ . 66

4.13 Comparison of the coordinates RMSD and the maximum angle deviation. . 72
4.14 Comparison of the coordinates RMSD and the angles RMSD. 74
4.15 Comparison of the coordinates RMSD and the average angle deviation. . . 75
4.16 Comparison of the coordinates RMSD and the 1/2-norm angle deviation. . 76
4.17 Histogram of the torsion around the peptide bond (ω). 78
4.18 Histograms of the backbone torsion angles ψ and ϕ. 79

(a) Histogram of the backbone torsion angle ψi =� (Ni, C
α
i , C

′
i, Ni+1). . . 79

(b) Histogram of the backbone torsion angle ϕi =� (C ′
i, Ni+1, C

α
i+1, C

′
i+1). 79

4.19 The size of the PAST (number of nodes) vs. the size of the alphabet. . . . 81
4.20 Number of leaves and average branching degree of the PAST. 82

(a) The number of leaves for all models and for average structures only. . 82
(b) The average number of children for all models and for average struc-

tures only. 82
4.21 Number of leaves and average branching degree for di�erent alphabet sizes. 83

(a) The number of leaves for di�erent discretization intervals. 83
(b) The average branching degree for di�erent discretization intervals. . . 83

5.1 40 di�erent models of antifreeze protein RD3 107
5.2 Computing average structures from average coordinates can lead to strange

results. 108
(a) Trajectory example . 108

xvi LIST OF FIGURES

(b) An average coordinates counter-example 108
5.3 Computing average structures from average angles. 109

List of Algorithms

1 constructSu�xTrie(T ′
i , lsufi) . 46

2 constructSu�xTree(Ti, refnode, re�dx, re�en) 48
3 GenSu�xTree::insertSequence(newString) 51
4 GenSu�xTree::canonizeRefPair() . 52
5 GenSu�xTree::testAndSplit(x) . 53
6 GenSu�xTree::approxSearch(w, curpos) . 87
7 GenSu�xTree::motifTraverse(node, prefLen) 111
8 GenSu�xTree::updateSimCounters(node, prefLen, p, toAdd, srcCnt) 112

xvii

xviii LIST OF ALGORITHMS

Preface

The subject of this thesis is inherently interdisciplinary. In the main, it can be classi�ed
as a contribution within computational biology (bioinformatics). In contrast to many
other approaches, we focus on practical applicability rather than theoretical worst-case
or average-case analysis (which often hides large constant factors in the complexity, that
prevents it from being useful in practice). The thesis considers problems of structural
genomics and computational proteomics that are solved by applying pattern matching
techniques to data mining in biopolymer structure databases like the PDB.

This thesis is structured as follows:
The �rst chapter introduces the reader into the �eld of genomics and motivates the

necessity to consider certain problems in the developing subject of proteomics.
The second chapter gives an overview of the biochemical properties of macromolecules

like DNA, RNA, and proteins. It explains the basic principles of nucleic acid and protein
structure.

In the third chapter, we explicate the principles of su�x trie and su�x tree construction
and usage.

The next chapter gives an overview of existing work regarding structure searching.
We discuss the drawbacks of the currently used methods. Afterwards, the construction
of a new structure index is treated, together with a suitable structure representation for
polypeptides and nucleic acids. We consider several measures of structural similarity and
apply the new representation to the entries of the PDB. Methods for exact and tolerant
searching are discussed. The chapter concludes with the description of various experiments
that describe the application of the new method to structure searches in the PDB.

The �fth chapter applies the new method to the problems of �nding frequent substruc-
tures and computing a classi�cation for entries in structural databases.

The pictures illustrating the structure of proteins were created using a PDB �le viewer
that is an integral part of a protein structure mining tool written by the author of this
thesis during the last four years. Most of the diagrams were created using the gnuplot

program.

xix

xx PREFACE

Chapter 1

Introduction

At the end of the day, proteins, not genes,
are the business end of biology.

Proteomics’ new order,
Editorial of Nature 437

1.1 Motivation

1.1.1 The Human Genome Project

In 2003 the Human Genome Project (HGP) celebrated the completion of sequencing the
human genome. The stem of this name refers to the Greek word �genos� for origin, and the
su�x �ome� stands for all, every, or complete. It means the whole hereditary information
that is encoded in the DNA (deoxyribonucleic acid) of an organism. The study devoted to
the (global) properties of genomes is called genomics .

In the �rst stages of the HGP, researchers hoped for major advances in medicine that
should result from the knowledge of the estimated 100.000 genes of the human genome.
Although the project �nished sequencing the roughly three billion base pairs two years
ahead of plan, another goal of the project, the determination of all genes, is still in progress.
A very surprising result was the updated estimate of the number of genes: between 30.000
and 40.000. Later on, even lower numbers of 20.000 to 25.000 were predicted, which is
within a factor of two compared to seemingly simple model organisms like Drosophila
melanogaster (fruit �y) and Caenorhabditis elegans (roundworm). It is actually less than
the number of genes of Arabidopsis thaliana, a small plant(!). Consequently, the question
arises, what makes the di�erence between highly developed and comparatively simple forms
of life.

Although the Human Genome Project was a great success, it had become apparent that
knowledge of the sheer sequence of amino acids would not allow to make signi�cant progress
in curing any illness. The usefulness of the results and methods was mostly restricted to
detecting predisposition to a variety of diseases, but the responsible gene did not provide

1

2 CHAPTER 1. INTRODUCTION

much information on the real reason of the disfunction. Hence, there was no starting point
to interfere with the biochemical reaction system of the pathological cells. The key to
a better understanding of the functional relations must therefore be the structure of the
agents that are participating in the respective processes. In the majority of cases, these
reactions involve biochemical macromolecules like nucleic acids and proteins.

1.1.2 The Importance of the Proteome

According to the standard pathway of information �ow in molecular biology (nowadays
spuriously cited as the Central Dogma), many parts of the DNA sequence are transcribed
into RNA (ribonucleic acid) which is then, at least in large part, translated into proteins .
Proteins are one of the most important classes of biochemical macromolecules. Together
with nucleic acids, polysaccharides, and lipids they make up the primary constituents of
living cells. Following the notation of genome and genomics, the entirety of all proteins
is called the proteome. On the one hand this term may relate to either a particular cell
type or a whole organism, on the other hand it can refer to a speci�ed point in time or the
whole life cycle. The respective subject of scienti�c study is called proteomics .

Proteins perform a rich variety of biological functions: enzymes catalyze biochemical
reactions, transport proteins carry substances, storage proteins retain energy providers,
contraction proteins facilitate motion by muscles, structure proteins provide a sca�old
for things like hairs and feathers, antibodies enable the response reaction of the immune
system, and, last but not least, hormones and transcription factors regulate biochemical
processes of an organism. Altogether, proteins are involved in each and every process that
is essential for life.

1.1.3 Sequence Determines Structure Determines Function

The reason for this supremacy in controlling the processes of life is the diversity of protein
structures. Although all proteins are made up according to the same simple principle of
construction, that is, they are chains of amino acid residues, they can adopt a rich variety
of di�erent shapes. This process of forming three-dimensional structures is called protein
folding . As a matter of fact, each amino acid sequence folds (under natural conditions)
into a unique structure. This so called native state determines the possible functions of
the protein. In eukaryotes, the structural diversity of proteins is considerably increased
by alternative splicing (see next chapter). This process is extensively found in human
cells, a fact that seems to explain the small number of human genes. Further diversity is
introduced into protein structure by post-translational modi�cations .

1.1.4 Determination of Structure

While determining a protein's sequence of amino acids is quite simple (at least from today's
point of view), the experimental determination of its three-dimensional structure is a long-
some, di�cult, and expensive process. In spite of the great e�orts for predicting protein

1.2. STRUCTURAL BIOINFORMATICS AND COMPUTATIONAL PROTEOMICS 3

structures from scratch with the help of computers (so called ab initio methods), there
has been only moderate progress in solving this problem. Thus, the three-dimensional
structures of proteins are determined by X-ray crystallography or NMR spectroscopy. The
data is stored in 'databases' like the popular Protein Data Bank (PDB). Due to the ex-
plosive growth of this database (see Figure 2.19), there are urgent needs for fast methods
that allow to �nd similar structures in the database. This can be used to answer the
question whether a newly determined protein structure contains an already seen fold. On
the other hand this would o�er unprecedented possibilities to project knowledge to novel
proteins � if structural similarities among proteins can be identi�ed e�ciently. Proven and
e�cient methods based on the amino acid sequence of proteins exist, yet an urgent inter-
est in methods for structural comparison remains for several reasons. Since the function
of a protein is largely determined by its three-dimensional shape, the structure is better
preserved than the sheer sequence of amino acids, and hence may reveal evolutionary or
functional relationships even if a similarity among the sequences is no longer detectable.
Thus, structural similarities may provide clues about the function of a new protein. Fur-
thermore, frequently occurring substructures may provide hints for functionally active sites
of molecules. Finally, structural analysis may aid our understanding of the principles and
rules of protein folding and architecture.

1.2 Structural Bioinformatics and

Computational Proteomics

While sequencing the human genome was a huge project and a matter of 13 years, a much
more complicated task is to be accomplished next. It has become apparent that there are
many problems in medicine and computational biology that cannot be solved based on the
DNA sequence alone. Often it is essential to look at the particular biochemical processes
which are necessarily dominated by the structure of the reaction participants. The main
reasons, why proteomics is an even more challenging �eld of research than genomics are
the following. On the one hand, the genome is static and the same in all cells of an
organism, whereas the proteome heavily depends on the genes that were expressed in the
cell under consideration. These can be very di�erent for cell types of di�erent tissues
or even in the same cell at di�erent points in time. On the other hand, there are much
more proteins found in the proteome of eukaryotic cells than protein-coding genes in the
genome. This seems to be somewhat surprising at �rst sight, but can be explained by a
process called alternative splicing . Moreover, most of the translation products are subject
to post-translational modi�cations (see next chapter) to �nally yield the functional protein.

Besides the problems in determining structures from crystallography or spectroscopy
experiments, there are several subjects considered important in the �eld of structural bioin-
formatics , in particular within the emerging �eld of computational proteomics . These are
(among others) the representation and parameterization of structures, the storage of struc-
tures in databases and methods for e�cient access, methods for extracting new knowledge

4 CHAPTER 1. INTRODUCTION

from the databases (e.g., identi�cation of frequently occurring substructures, detection of
active sites), optimal pairwise superposition or multiple alignment of structures, structure
comparison, structure-based clustering and classi�cation, as well as prediction of biopoly-
mer structures from the sequence of monomers. For a more detailed description of the
challenges within structural bioinformatics see the introductory chapter by Altman and
Dugan [AD03]. A description of the closely related �eld of structural genomics , together
with further references, can be found in the chapter by Burley and Bonanno [BB03].

Chapter 2

Biochemical Foundation

Perhaps the most remarkable features of the molecule
are its complexity and lack of symmetry.

John Kendrew about the first protein structure
that he determined in 1958

2.1 Biopolymers

Most of the biochemical macromolecules are polymers , that is, they consist of repeating
units that are the residues of a linking reaction of monomers . Well-known examples for
biopolymers are the nucleic acids , in particular deoxyribonucleic acid (DNA) and ribonu-
cleic acid (RNA). Other important examples of biopolymers are polypeptides (or proteins ,
see below), and polysaccharides (made of monosaccharides, simple sugars like glucose).

While the building blocks of polymers in general can be arranged in a complex structure
(e.g., glucose units of polysaccharides like starch or glycogen are arranged in a branched
structure), the composition of many polymers exhibits a chain-like assembly, at least from
the viewpoint of covalent bonds. This is particularly true for the cases of DNA, RNA, and
polypeptides. We will discuss the advantages later that may arise from this linear setup.

2.2 Proteins

2.2.1 Amino Acids as Basic Modules of Proteins

The basic building blocks (monomers) of proteins are α-amino acids. These are compara-
tively small molecules that possess an amino group (NH2) and a carboxyl group (COOH).
The α indicates that both functional groups are attached to the same carbon atom (Cα).
The other two valences of this carbon atom establish bonds to a hydrogen atom (H) as
well as a variable side chain (R). For a schematic view of an amino acid see Figure 2.1.

In the case where the side chain is more than just a single hydrogen atom, the central
carbon atom Cα is called chiral , since there are four di�erent substituents and thus two

5

6 CHAPTER 2. BIOCHEMICAL FOUNDATION

R

H
H

N

O

OHCαH
C’

Figure 2.1: Schematic structure of amino acids.

possibilities of attaching the groups that cannot be superimposed. In fact, they are mirror
images of each other (enantiomers, see Figure 2.3). In chemistry these two forms are
traditionally denoted by D and L, or, according to legal naming conventions more correctly,
R and S. As a matter of fact, proteins found in nature are almost entirely made of L-amino
acids. The ultimate reason is unknown so far, but it is assumed that there is an evolutionary
advantage if all amino acids share the same con�guration, and it happened just by chance
to be the L-form. In rare cases, D-amino acids were found in proteins, but these were due
to direct enzymatic synthesis.

The set of amino acids that are regularly built into proteins comprises 20 di�erent
variations of the side chain. These so called proteinogenic amino acids are encoded for by
DNA/RNA triplets of the standard genetic code. It is of prime importance to note, that
the �nal structure of a protein is largely determined by the combination of the di�erent
amino acids and the characteristic properties of their side chains. These can be classi�ed
according to hydrophobicity, charge, aromaticity, and size, see Figure 2.2.

2.2.2 Historic Background

In the thirties of the past century, W.T. Astbury and coworkers showed in a series of
experiments that the X-ray di�raction pattern of keratin contained in wool, feathers, and
human hair changed under di�erent conditions. They found mainly two di�erent di�raction
patterns which were referred to as α and β. These two states could be transformed into each
other by suitable treatment, leading to the assumption that they are di�erent conformers of
the same molecule. Since the β-state was supposed to be more extended than the α-form,
this provided an reasonable explanation of the elasticity of wool and human hair.

Although all the necessary information to propose a model for the structure of keratin
was available with the data of these experiments, it was not until the year 1950, when
Linus Pauling and Robert Corey [PC50, PCB51] proposed two variants of helical
structures which were believed to be very stable. They had been derived from

1. an essential assumption of the general geometry of polypeptides that followed from
Pauling's resonance theory of chemical bonds: planarity of the peptide group,

2. bond lengths and bond angles of related small molecules which had been measured
with su�cient accuracy by X-ray di�raction.

2.2. PROTEINS 7

O

N

O

O

N

O

O

N

N

N

O

O

N

N
O

N

O

N

N

N

O

O O

OO

N

O
O

NO

O

O

N

O

O

N
O

O

O

N

O

O

N

O

O

N

S
O

O

N

S O

O

N

O O

O

O

N

N

O

O

O

N

N

O

O

N
N

O

O

N
O

O

N

O O

O

N
O

(I) Isoleucine (Ile)

(L) Leucine (L)

(H) Histidine (His)

(K) Lysine (Lys)

(R) Arginine (Arg)

Basic

(E) Glutamic acid (Glu)

(D) Aspartic acid (Asp)

Acidic

(A) Alanine (Ala)

(Y) Tyrosine (Tyr)

(F) Phenylalanine (Phe)

(V) Valine (Val)

(M) Methionine (Met)

(C) Cysteine (Cys)

(S) Serine (Ser)

(Q) Glutamine (Gln)

(N) Asparagine (Asn)

(P) Proline (Pro)

Hydrophobic

Neutral

Aromatic

(G) Glycine (Gly) (W) Tryptophane (Trp)(T) Threonine (Thr)

Polar

Figure 2.2: Classi�cation of the 20 proteinogenic amino acids, roughly ordered top down
by decreasing hydrophobicity.

8 CHAPTER 2. BIOCHEMICAL FOUNDATION

R

H

αN C OOH2 CH

(a) L-amino acid

R

H

αCCOOH NH2

(b) D-amino acid

Figure 2.3: Enantiomers of an amino acid.

In particular, the prediction of one helix having 3.7 residues per turn and a unit transla-
tion per residue of 1.47Å was a major breakthrough. It was supposed to be contained in
α-keratin, contracted myosin, hemoglobin, and other structures showing the α-di�raction
pattern. Hence, it was subsequently named the α-helix. (On the other hand, the second pre-
dicted helix, the so called γ-helix, has virtually never been observed as of today. . .) The pre-
dicted structure was supported in 1951 by X-ray experiments of Max Perutz [Per51] and
�nally con�rmed in 1957 by the �rst determination of a (low-resolution) three-dimensional
protein structure (myoglobin) by John C. Kendrew et al. [KBD+58]. Kendrew made
a remarkable statement, probably disappointed of the not so regular structure, which was
in contrast to the regular structure of the DNA double helix that had been determined
some years before:

�Perhaps the most remarkable features of the molecule are its complexity and
lack of symmetry. The arrangement seems to be almost totally lacking in the
kind of regularities which one instinctively anticipates, and it is more compli-
cated than has been predicted by any theory of protein structure.�

It should be noted that the �gure in the paper of Pauling and Corey shows a left-
handed α-helix made of D-amino acids, which is in contrast to the naturally occurring
right-handed α-helices made of L-amino acids, that is, the �gure shows the mirror image
of the true structure. Since the γ-helix is depicted as a right-handed spiral, this indicates
that the authors did not pay much attention to this seemingly negligible fact (see the
review by Eisenberg [Eis03] for further information). In the following years, α-helices
and β-sheets [PC51] turned out to be the most frequent patterns (by far) of all known
protein structures.

2.2.3 Formation of the Backbone

Amino acids form linear polymers through a reaction of their respective amino and car-
boxylic functional groups. The resulting molecule is called a peptide (from Greek for
'digestible'), or, in the case of many amino acids, a polypeptide. The monomer parts are
afterwards called (amino acid) residues . The new kind of bond between the C ′ and N
atoms that is formed by releasing a water molecule is called the peptide bond . Due to the
mesomeric e�ect, the π-electron pair of the C = O double bond is delocalized over the

2.2. PROTEINS 9

N
C

O

H

+

_

N
C

O

H

(a) Mesomeric structures.

N
C

O

H

δ+

δ−

(b) Delocalized π-bond.

Figure 2.4: The peptide bond.

(a) The trans conformation. (b) The cis conformation.

(c) The peptide planes intersect each other at the Cα atoms.

Figure 2.5: The plane of the peptide group.

Bond Length
single C −N bond 1.47Å
peptide C = N bond 1.33Å
double C = N bond 1.27Å

Table 2.1: Typical bond lengths of C and N . The length of the peptide (amide) bond is
between the lengths of the single and the double bond.

10 CHAPTER 2. BIOCHEMICAL FOUNDATION

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

N
um

be
r

of
 b

on
ds

Bond length in Angstroem

Figure 2.6: Sample bond length histogram between C and N atoms of the PDB �le 1d2r.

C ′ −N bond, which causes the peptide bond to have a partial double bond character (see
Figure 2.4). Consequently, the peptide bond has a reduced bond length and, in contrast
to a normal covalent C − N bond, rotation around the bond is prevented by a strong
energy barrier. This forces the participating atoms of each peptide unit into a coplanar
position (which is mostly the trans-conformation where the neighboring Cα atoms reside
on di�erent sides, and rarely the cis-conformation where the Cα atoms are on the same
side of the peptide bond). Thus, the variability of the backbone of the polypeptide, that is,
the chain of the atoms · · ·N−Cα−C ′ · · ·, is restricted to rotations around the Cα−C ′ and
N − Cα bonds. These rotations can be measured formally by the torsion that is de�ned
by the bonds of the two neighboring backbone atoms.

αB C

D

A

Figure 2.7: The general de�nition of torsion angles.

2.2. PROTEINS 11

(a) Counting-based numbering scheme

(b) Cα-oriented numbering scheme

Figure 2.8: The backbone torsion angles ψ and ϕ.

2.2.4 Protein Structure

The overall structure of proteins is usually described in a 4-level hierarchy. Starting at
the lowest level, the particular sequence of the di�erent amino acids constitutes a proteins
primary structure. Except for the concrete side chains (and their respective properties
like size or charge), this sequence does not tell much about the actual three-dimensional
structure and shape of the protein. Nevertheless, the particular side chains constrain the
possible conformations of the backbone to a large degree. At the end, it is the amino acid
sequence that prede�nes the �nal structure of the folded protein.

The secondary structure of a polypeptide describes the local conformation of parts that
fold independently from the rest of the protein. This structure is mainly e�ectuated by
hydrogen-bonding interactions between the carbonyl oxygen and the amide proton of the
peptide bond atoms. Exceptionally stable (and thus frequently occurring) sub-structures
are formed by regularities of the backbone conformations: the so-called secondary structure
elements . The most prominent ones are the helices (most notably the α-helices) as well as
the β-strands.

The term tertiary structure denotes the global three-dimensional conformation of one
polypeptide chain. It describes how compact substructures (domains) are formed from
several motifs, and how these domains are arranged within the molecule.

The spatial arrangement in which two or more polypeptides assemble a multimeric
protein is referred to as the quaternary structure.

12 CHAPTER 2. BIOCHEMICAL FOUNDATION

Gly Thr Gly Tyr Asp Leu Ser Asn Ser Val Phe Ser Pro Asp Gly Arg Asn Phe Gln Val Glu Tyr Ala Val Lys Ala Val Glu Asn Gly Thr Thr Ser Ile

Gly Ile Lys Cys Asn Asp Gly Val Val Phe Ala Val Glu Lys Leu Ile Thr Ser Lys Leu Leu Val Pro Gln Lys Asn Val Lys Ile Gln Val Val Asp Arg

His Ile Gly Cys Val Tyr Ser Gly Leu Ile Pro Asp Gly Arg His Leu Val Asn Arg Gly Arg Glu Glu Ala Ala Ser Phe Lys Lys Leu Tyr Lys Thr Pro

Ile Pro Ile Pro Ala Phe Ala Asp Arg Leu Gly Gln Tyr Val Gln Ala His Thr Leu Tyr Asn Ser Val Arg Pro Phe Gly Val Ser Thr Ile Phe Gly Gly

Val Asp Lys Asn Gly Ala His Leu Tyr Met Leu Glu Pro Ser Gly Ser Tyr Trp Gly Tyr Lys Gly Ala Ala Thr Gly Lys Gly Arg Gln Ser Ala Lys Ala

Glu Leu Glu Lys Leu Val Asp His His Pro Glu Gly Leu Ser Ala Arg Glu Ala Val Lys Gln Ala Ala Lys Ile Ile Tyr Leu Ala His Glu Asp Asn Lys

Glu Lys Asp Phe Glu Leu Glu Ile Ser Trp Cys Ser Leu Ser Glu Thr Asn Gly Leu His Lys Phe Val Lys Gly Asp Leu Leu Gln Glu Ala Ile Asp Phe

Ala Gln Lys Glu Ile Asn

(a) Primary structure.

(b) Secondary structure (helices). (c) Secondary structure (sheets).

(d) Tertiary structure. (e) Quaternary structure.

Figure 2.9: The protein structure hierarchy.

2.2. PROTEINS 13

(a) 310-helix (b) α-helix (c) π-helix

Figure 2.10: Visual comparison of the di�erent helix types. Note the di�erent H-
bonding schemes: CO(i) · · ·HN(i+3) for the 310-helix, CO(i) · · ·HN(i+4) for the α-helix,
CO(i) · · ·HN(i+5) for the π-helix.

14 CHAPTER 2. BIOCHEMICAL FOUNDATION

(a) D-amino acid aminotransferase from
thermophilic Bacillus sp. (PDB code 3daa)

(b) KDPG aldolase from
Escherichia coli (PDB code 1fq0)

(c) L-lactate dehydrogenase from
Bacillus stearothermophilus (PDB code 1ldn)

(d) Cholera toxin B from
Vibrio cholerae (PDB code 1chp)

Figure 2.11: Examples of quaternary structure (for further instances see [PR04d] p.45).

2.2. PROTEINS 15

(a) Lateral view of the 20S core protease particle (PDB code 1g65) of the
proteasome of Saccharomyces cerevisiae. Together with two 19S regulatory
particles it is used for the digestion of ubiquitin-marked proteins into small
peptides and amino acids. The hollow barrel consists of four heptameric
rings of two di�erent types. The outer rings (here at the top and bottom)
consist of α- and the inner ones of β-subunits.

Figure 2.12: Examples of quaternary structure (continued).

16 CHAPTER 2. BIOCHEMICAL FOUNDATION

Name H-Bond ϕ ψ α Residues Rise Pitch Ref.
CO · · ·HN per turn [Å/res.] [Å/turn]

310 i, i+ 3 −49 −26 81 3.0 2.00 6.0 [RS68, Cre93]
α i, i+ 4 50 [OH94]

−57 −47 45 3.6 1.50 5.4 [RS68, Cre93]
−65 −41 43 [Cho84]

π i, i+ 5 −76 −41 30 4.4 1.2 5.3 [FAK02]
−57 −70 17 4.4 1.15 5.0 [RS68, Cre93]

Table 2.2: Characteristics of di�erent helices. We calculated approximate values (gray) for
missing α-angles (for a formula, see [Lev76]), and for the pitch.

2.2.5 Secondary Structure Elements

Helices

Helices are spiral structures that are formed by regular repetitions of hydrogen bonds
between the carboxyl and amide functional groups of the backbone, see Figure 2.10. In
α-helices, the hydrogen bond is formed between the carboxyl oxygen of residue i and the
amide hydrogen of residue i+4. Please note, that it makes a di�erence whether the bond is
in the forward or backward direction along the polypeptide chain. Due to steric hindrance,
most of the helices are right-handed. There are also helices, where the hydrogen bond is
tied to the residue i + 3 or i + 5, which causes the coil to be more twisted (310-helix), or
less (π-helix). For further information concerning other helix types, see[FAK02, NK05].

The geometric properties of helices are usually described by the average or most frequent
ϕ and ψ angles that are usually observed in these structures. While it seems to be easy
to give such a pair of angles for the abundant α-helices, it could be a problem for the rare
cases of π, 310, as well as the left-handed helices. Consequently, there are di�erent values
given in the literature, but �most surprisingly� this also holds true for the α-helices. So,
what might be the reason for these extremely di�ering values? For this question to be
answered we have to consider

1. the admissibility of ϕ-ψ pairs and

2. the preference of certain conformations.

The �rst point can be thought of as trying all possible (ϕ, ψ) combinations for all di�erent
sequences consisting of a few amino acids. The regions where steric hindrance occurs
between any atoms of either backbone or side chains (assuming standard geometry of the
bond lengths and angles) are cut out from the ϕ-ψ (Ramachandran) plot. Allowed
regions are marked. Additionally, in the transient parts between allowed and forbidden
regions, there are zones that could occur by some relaxation of steric hindrance (small
torsion or strain compared to standard bond geometry).

We believe, that the di�erent measures of the typical helix parameters are in fact due
to their variability. There are su�ciently large admissible regions in the Ramachandran

2.2. PROTEINS 17

plots that enable some �exibility of the backbone. The plots of the hypothetic length of
H-bonds of the di�erent types are shown in Figures 2.13 and 2.14. We can see that the
maximum of the torsion angle deviations is located between the ideal values for α- and π-
helices. Thus we assume the frequent existence of bifurcated three-center hydrogen bonds,
which was also suggested by Preissner et al. [PES91].

Strands and Sheets

Other important regular secondary structures are the β-strands. Several of these almost
fully extended chains are usually aligned near each other to form a β-sheet (also called
pleated sheet) which is stabilized by hydrogen bonds between adjacent strands. The two
types (parallel or antiparallel) di�er in the distance of the neighboring chain segments.
Sheets with mixed parallel and antiparallel interactions also occur frequently.

Turns and Loops

Turns and loops are irregular secondary structures. They occur at the surface of proteins
and contain mostly polar residues. Short loops can be classi�ed according to their structure,
whereas longer loops exhibit a very variable shape. The most abundant loop type connects
the ends of the strands of antiparallel β-sheets. It is referred to as β-turn or β-hairpin.

2.2.6 Supersecondary Structure, Motifs, and Domains

Motifs are Patterns of Supersecondary Structure

Several secondary structure elements that are contiguous within a chain build a more or
less complex supersecondary structure. If this consecutive pattern occurs frequently in the
database it is called a (structural) motif , in contrast to sequence motifs which are conserved
patterns of the amino acid sequence. While sequence motifs are usually strong indicators
of a particular function (therefore they are also called functional motifs), the presence of
a structural motif may or may not be an indicator for similar function performed by the
respective carriers.

Examples of structural motifs are the beta hairpin, the Greek key, the helix-turn-
helix / helix-loop-helix motif (in particular the DNA- and the calcium-binding motif), the
zinc �nger, the β-α-β motif as well as the jelly roll (that is made of several Greek key
motifs).

Domains are Units of Function

While motifs are required to be arranged successively in the chain, there are also non-
consecutive parts that assemble a particular structure: a domain. These parts of a polypep-
tide chain are often built from structural motifs and secondary structure elements. They
usually fold independently from the rest of the protein into a stable tertiary structure that
performs a highly speci�c function (q.v. [JC85, Ros85, WW03]).

18 CHAPTER 2. BIOCHEMICAL FOUNDATION

 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

(a) Helix of H-bond type (i, i+ 3), or 310-helix resp.

 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

(b) Helix of H-bond type (i, i+ 4), or α-helix resp.

Figure 2.13: The H-bond length of the 310- and the α-helix.

2.2. PROTEINS 19

 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

(a) Helix of H-bond type (i, i+ 5), or π-helix resp.

 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

ϕ

ψ

-180 -135 -90 -45 0 45 90 135 180

-180

-135

-90

-45

 0

 45

 90

 135

 180

(b) Helix of H-bond type (i, i+ 6)

Figure 2.14: The H-bond length of the π- and the (i, i+ 6)-helix.

20 CHAPTER 2. BIOCHEMICAL FOUNDATION

2.2.7 Comment

The de�nitions of the described hierarchy together with the terms motif and domain are
in fact a simpli�ed view of the real nature. Of course, there cannot be such a strict
separation of all these levels and terms. For instance, it is not exactly clear at which point
to draw a distinction between secondary and supersecondary structure. How often must
a structure occur to be called a motif. Why are β-sheets usually classi�ed as secondary
structure, although the strands may be interrupted, and thus may be non-consecutive in
the chain. Why should β-strands be secondary structure elements while they do not fold
independently, they need H-bonds to parallel or anti-parallel strands to be stable.

2.2.8 Further Reading

Further information on protein structure can be found (amongst others) in the richly
illustrated primer of Petsko and Ringe [PR04d], the detailed textbook by Branden and
Tooze [BT99], the standard work of Creighton [Cre93], the compact work of Darby
and Creighton [DC93], as well as the chapter by Scheeff and Fink [SF03]. Topics
regarding the physical properties of biochemical macromolecules are treated in the book
of van Holde, Johnson, and Ho [vHJH98].

2.2.9 Protein Folding

The folding of proteins occurs according to the minimization of free energy. For globular
proteins, this means to bring all polar residues to the surface, all hydrophobic residues
into the interior of the molecule. This process is referred to as the hydrophobic collapse.
Membrane proteins follow other rules of folding due to their special environment. The
comparatively fast folding of proteins seems to contradict the hard computational problem
of predicting the structure for a protein of known sequence, which is known as Levinthal's
Paradox.

2.2.10 Protein Functions

Proteins adopt a rich variety of di�erent shapes, and it is exactly this diversity in three-
dimensional structure that makes them suitable to ful�ll speci�c functions. In the context
of evolution, this leads to a conservation not only of the sequence of amino acids, but
particularly of the structure within functionally active parts of proteins.

2.3 Nucleic Acids and the Central Dogma

2.3.1 DNA and RNA

At the end of the 19th century, a substance had been isolated from the nuclei of cells,
which was subsequently called 'nuclein' (by F. Miescher) and later 'nucleic acid' (by

2.3. NUCLEIC ACIDS AND THE CENTRAL DOGMA 21

Function Description Example(s)
Enzymes catalyze biochemical reac-

tions
lactase (cleavage of lac-
tose), amylase (digestion of
polysaccharides)

Transport proteins carry substances hemoglobin carries oxygen
Storage proteins retain energy providers ovalbumin (white of egg),

ferretin, casein
Contraction proteins facilitate motion by muscles actin, myosin (muscles)
Structure proteins provide a scaffold for stability keratin (hair, feathers),

collagen (scar tissue, ten-
dons, bones)

Antibodies enable the response reaction
of the immune system

IgG (binding of pathogens like
viruses or bacteria)

Hormones regulate biochemical pro-
cesses of an organism

insulin (regulation of carbohy-
drate metabolism)

Transcription factors regulate the transcription of
specific genes

STAT (Signal Transducers
and Activator of Transcription,
regulate cell growth)

Receptor proteins specific binding to neuro-
transmitters or hormones

5-HT receptors (for serotonin
binding)

Table 2.3: The main functions of proteins.

22 CHAPTER 2. BIOCHEMICAL FOUNDATION

R. Altmann). It became evident, that there were two di�erent forms, one containing
ribose, the other one containing deoxyribose. This led to the well known names ribonucleic
acid and deoxyribonucleic acid, or for short RNA and DNA.

It was widely believed that proteins carry the hereditary information (genes) from one
population to the next. Today, it is a matter of common knowledge, that DNA carries the
genetic code of all organisms and many viruses. But �rst evident experimental indication
to this essential fact was given not until the forties of the 20th century by Avery et
al. [AMM44]. This perception was �nally proved through a series of experiments conducted
by A. Hershey and M. Chase in 1952 [HC52].

In 1953, the helix structure of DNA was proposed in the celebrated publication of
James Watson and Francis Crick [WC53]. However, it should be noted that there
work was heavily based on discoveries that were made by Maurice Wilkins and Ros-
alind Franklin.

In September of 1957, Crick presented a summary of his ideas regarding the genetic
code at the Symposium of the Society for Experimental Biology and postulated the Se-
quence Hypothesis and the Central Dogma [Cri58, Cri70], which is considered a seminal
contribution to the development of Molecular Biology.

The Sequence Hypothesis �. . . assumes that the speci�city of a piece of nucleic acid is
expressed solely by the sequence of its bases, and that this sequence is a (simple) code for
the amino acid sequence of a particular protein.� [Cri58]

The Central Dogma

�. . . states that once 'information' has passed into protein it cannot get out
again. In more detail, the transfer of information from nucleic acid to nucleic
acid, or from nucleic acid to protein may be possible, but transfer from protein
to protein, or from protein to nucleic acid is impossible. Information means
here the precise determination of sequence, either of bases in the nucleic acid
or of amino acid residues in the protein.� [Cri58]

Unfortunately, it is today's perception of the Central Dogma simply stating that DNA
is commonly processed into RNA which is then used to make proteins. As has been pointed
out by Crick [Cri70] this (positive) statement is a rather speci�ed version of the Sequence
Hypothesis and not the meaning of the Central Dogma which is an essentially negative
proposition. It says that information �ow does not occur in the direction from protein to
DNA, RNA, or protein itself.

2.3.2 Protein Biosynthesis

The process of protein (bio)synthesis starts by binding an enzyme (RNA polymerase) to a
speci�c marker position (the promoter) on the DNA which initiates the transcription phase
by unwinding the two complementary strands. RNA polymerase slides along the template
strand and creates a complementary RNA chain by successive elongation. In eukaryotes,
the transcribed mRNA has to be processed by cutting out the introns and by splicing
the exons; then the processed mRNA has to pass the membrane of the cell nucleus. The

2.4. THE PROTEIN DATA BANK 23

mature mRNA is protected by a 5' cap against degradation; in the case of eukaryotes also
a poly-A tail is added at the 3' end. In the cytoplasm, the base triplets of the mRNA are
translated into a sequence of amino acids, mediated by ribosomes and tRNA molecules.

2nd base
U C A G

U Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser Stop Stop A
Leu Ser Stop Trp G

C Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Gln Arg A

1st Leu Pro Gln Arg G 3rd
base A Ile Thr Asn Ser U base

Ile Thr Asn Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G

G Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Table 2.4: The genetic code that translates a codon into an amino acid.

2.3.3 DNA and RNA Structure

DNA encodes the genetic information by a sequence of nucleotides , each one consisting of
the sugar 2-deoxyribose, a phosphate, and one of the four bases adenine, thymine, guanine,
and cytosine, abbreviated by the letters A, T, C, and G (see Figures 2.15, 2.16 and 2.17).
The nucleotides are arranged in two complementary anti-parallel strands forming a double-
helix, such that each adenine of one strand is paired with a thymine of the other strand,
just as each cytosine is paired with a guanine. In ribonucleic acid (RNA), the nucleotide
thymine is replaced by uracil.

A comprehensive introduction into DNA and RNA structure can be found in the chapter
by Neidle, Schneider, and Berman [NSB03]. Geometric parameters in nucleic acids
were studied in [GSC+96].

2.4 The Protein Data Bank

The Protein Data Bank (PDB) was established in 1971 to hold the set of available struc-
tures of biological macromolecules. It was held by the Brookhaven National Laboratory

24 CHAPTER 2. BIOCHEMICAL FOUNDATION

Type Full Name Description
mRNA messenger RNA After transcription from a DNA tem-

plate part, mRNA carries the genetic
information to the ribosome for protein
synthesis.

ncRNA /
sRNA /
(s)nmRNA /
fRNA

non-coding RNA /
small RNA /
(small) non-messenger RNA /
functional RNA

A type of RNA that is not translated
into a protein. Most prominent exam-
ples are rRNA and tRNA.

rRNA ribosomal RNA Central component of the ribosome.
tRNA transfer RNA Carries a specific amino acid to a

growing peptide chain.

Table 2.5: The di�erent types of RNA.

N

N

N

N

N

N

N

N
N

N N

N

N

N

N

N

O

N

N

ON

N

N

O

O N

N

O

O

Purine

Adenine (A)

Guanine (G)

Uracil (U)

Pyrimidine

Thymine (T)

Cytosine (C)

Figure 2.15: The DNA- and RNA-bases. Adenine and guanine are derived from purine;
cytosine, thymine, and uracil are derived from pyrimidine.

2.4. THE PROTEIN DATA BANK 25

N

N

N N

O

N

N

N

N

N

N

N

N N

N

H O P2 3

H O P2 3

H O P2 3

H O P2 3

N

N

ON

N

N

ON

N

N

O

O

N

N

O

O

H O P2 3

H O P2 3

H O P2 3

H O P2 3

N

N

N N

O

N

O

O

O

O

N

HO

HO

HO

HO

OH

OH

O

O

O

O

O

O

O

O

HO

HO

HO

HO

OH

OH

O

O

O

O

Base

Nucleotide

N−glycosidic
bond

NucleosidePentose

Adenosine monophosphate (AMP)

Deoxycytidine monophosphate (dCMP)

Deoxythymidine monophosphate (dTMP)Deoxyadenosine monophosphate (dAMP)

Deoxyguanosine monophosphate (dGMP)

Uridine monophosphate (UMP)

Guanosine monophosphate (GMP) Cytidine monophosphate (CMP)

Figure 2.16: The nucleotides of DNA and RNA are made of one of the heterocyclic bases,
a pentose sugar (ribose for RNA, deoxyribose for DNA), and a phosphate group.

26 CHAPTER 2. BIOCHEMICAL FOUNDATION

N

N

N N

O

N

P O
O

O

(O)HO

O

P O
O

P O
O

P O
O

O

(O)HO

O

N

N

N N

N

N

N

ON
O

(O)HO

O

−

−

−

−

Figure 2.17: The principal structure of DNA and RNA.

2.4. THE PROTEIN DATA BANK 27

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

N
um

be
r

of
 p

ol
yp

ep
tid

e
ch

ai
ns

Length (amino acid residues)

Sequence length histogram

All models
One model

Figure 2.18: Length histogram of the Protein Data Bank.

(BNL) until 1999 when responsibility moved to the Research Collaboratory for Structural
Bioinformatics (RCSB), a consortium composed of Rutgers, The State University of New
Jersey, the San Diego Supercomputer Center at the University of California, San Diego,
and the National Institute of Standards and Technology (NIST). Today, it is the largest
repository for storing data related to molecular biology. In particular, the PDB holds the
three-dimensional structures of proteins and nucleic acids, that were determined by X-ray
crystallography or NMR spectroscopy. A few hundred theoretical models were deposited
too. Further information can be found in [ASPM97, BBM+97, BWF+00, PDB03].

Since the PDB was established by molecular biologists and biochemists, its initial state
was more that of a collection of text �les containing all the coordinates and structural
information. It did not follow a computer scientist's guidelines for using modern database
systems, such as bringing the tables into certain normal forms for saving space, minimizing
redundancy, and assuring data integrity, as well as providing methods for fast access, e.g.
via indexing structures. In the �rst years, these considerations were not so important since
the PDB contained only a few structures and people working with it were aware of nearly
all aspects of its concise contents. But a serious problem appeared with the explosive
growth of this database (which seems to be exponential, see Figure 2.19).

For information regarding other structural databases, such as the Nucleic Acid Database
(NDB), see [TG89, BOB+92, GPK00, BWF+03, WB03].

28 CHAPTER 2. BIOCHEMICAL FOUNDATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1975 1980 1985 1990 1995 2000 2005

N
um

be
r

of
 s

tr
uc

tu
re

s

Year

PDB Structures

(a) Linear scale

 1

 10

 100

 1000

 10000

 100000

 1975 1980 1985 1990 1995 2000 2005

N
um

be
r

of
 s

tr
uc

tu
re

s

Year

PDB Structures

(b) Logarithmic scale

Figure 2.19: Growth of the Protein Data Bank.

Chapter 3

Algorithmic Foundation

If a tree has leaves, what does a trie have?
Exercise 6.3.1 in Donald E. Knuth’s

“The Art of Computer Programming”
(Vol.3: Sorting and Searching)

3.1 Pattern Matching

The primary task in the area of pattern matching is to perform a certain kind of search
within a given arrangement of symbols. More formally, the various problems are stated as
follows.

Throughout this thesis, we will assume a linear composition, that is a sequence, of the
symbols. (Two-dimensional, three-dimensional, and d-dimensional arrangements have been
studied in the literature too, but seem to be much more di�cult to handle than the �rst
case.) The linear sequence is commonly called a string , whereas the underlying symbols
are called the characters of the string.

Let Σ be a set of characters which is called the alphabet . Usually, it is assumed that Σ
is a �nite set and the only operations de�ned for its entities are the comparison operators
which state whether two character variables x and y hold the same value or not (e.g., for
Σ = {'a', 'b'}, x = y holds for the assignments {x = 'a', y = 'a'} and {x = 'b', y = 'b'},
whereas x 6= y holds for the assignments {x = 'a', y = 'b'} and {x = 'b', y = 'a'}).
Sometimes, the alphabet is allowed to be in�nite, and, as we will see, it makes sense to
consider also approximate comparison operators based on similarity or distance functions
(rather than absolute identity) which rate pairs of characters to be more equal than others.

We denote by Σ` the set of all strings of exactly ` characters from the alphabet Σ:

Σ` = {x1 · · ·x` : ∀i ∈ [1, `] xi ∈ Σ}

Please note that, within program code or pseudocode, we usually use the bracket notation
and assume the index to start with zero:

Σ` = {x[0] · · ·x[`− 1] : ∀i ∈ [0, `− 1] x[i] ∈ Σ}

29

30 CHAPTER 3. ALGORITHMIC FOUNDATION

The length of a (�nite) string s, that is the cardinality of its constituting multi-set of
characters, is denoted by |s|. The string having length zero is represented by ε. By Σ+ we
denote the union of all strings over alphabet Σ having an arbitrary (�nite) strictly positive
length. Similarly, Σ∗ is de�ned as the set of all strings of �nite length:

Σ+ =
∞⋃

`=1

Σ`

Σ∗ =
∞⋃

`=0

Σ` = Σ+ ∪ {ε}

We shall also consider sets of strings, for instance D = {s1, . . . , sk}. We denote the
number of strings by |D| = k, while the overall size of the dictionary or the database
content, that is the sum of all string lengths, is denoted by

‖D‖ =
k∑

i=1

|si|

Please note, that there is a di�erence between a set of strings s1 = {ε} that consists
only of the empty string and an empty set of strings s2 = {} that contains no string. The
cardinality of both sets di�ers since |s1| = 1 and |s2| = 0, although ‖s1‖ = ‖s2‖ = 0.

To simplify matters, we introduce the following terms: a consecutive part ti · · · tj of
the text is called a subword of t. A subword ti · · · tn that extends to the end of the text is
called a su�x of t, denoted by suf i(t). Accordingly, a subword t1 · · · ti that ranges to the
�rst character of the text is called a pre�x of t, denoted by prei(t). The degenerate case
of sufn+1 and pre0 represent the empty string (ε). A su�x (resp. pre�x) of the text t
is called proper if it is not equal to t. (This is the common de�nition of 'proper' in this
context. May be, it would be more convenient to exclude the empty case too.)

Let p = p1 · · · pm ∈ Σ+ and t = t1 · · · tn ∈ Σ+ be (�nite) sequences of characters
from this alphabet. The problem to be solved is the question whether the pattern p of
length m is a subword of the text t of length n, that is, is there a position i in t, such that
∀k : ti+k = pk. An extended version of this problem could ask for all such positions, which
we will call occurrences of p in t.

Within the �rst decades of the development of pattern matching theory there have been
quite a lot of ideas to approach this central problem, the most prominent ones being the
algorithm of Knuth, Morris, and Pratt, the algorithm of Boyer and Moore, the
algorithm of Aho and Corasick, as well as the algorithm of Karp and Rabin.

Two general ideas seem to be central concepts within this theory. The �rst one is the
usage of a preprocessing step that precedes and simpli�es the actual search step, allowing
in particular a fast repetition of the search process with a slightly changed setting. The
other idea is the usage of tree structures to make decisions during the search. Computer
science has witnessed the development of numerous variants, such as binary search trees,
red-black-trees, AVL-trees, B-trees, (a, b)-trees, and so on (see, e.g., [Knu98, CLRS01]).

3.2. ATOMIC Σ+-TREES (TRIES) 31

m

u

e

l

p

p

e

n

r

a

h

c

lia

p

a

y

aa

n

a

n

a

b

s

a

n

a

e

l

p

i

o

t

o

c

a

d

o

pn v

p

r

a

c

e

a

Figure 3.1: The atomic tree (trie) for the words ananas, apple, apricot, avocado, banana,
papaya, peach, pear, pineapple, and plum.

While these structures are usually used by applying comparisons to the keys as a whole
(e.g., numbers or strings), it is also possible to take advantage of the piecewise assembly
of each key and to perform the comparison step-by-step by comparing the constituting
parts (bits or characters) of the keys (which is called 'digital searching', see [Knu98] for
an overview of the methods). Some of the more intricate structures apply the ideas of
preprocessing and digital searching using trees to build a so called index that provides an
accelerated search process. This approach will be discussed in more detail in the sections
below.

3.2 Atomic Σ+-Trees (Tries)

The fundamental structure we utilize in the following is the tree having a dedicated root
node (or short rooted tree). In this context, we assume the usual denotation: For each
node, there is exactly one path that connects it to the root node. The edges of this path
are considered to point along the directed path from the root to the actual node. The
source node is called a parent or ancestor of the target node. Accordingly, the target node
is called a child or successor of the source node.

A Σ+-tree is a rooted tree that satis�es the following conditions: Each edge connecting
two nodes must be labeled with a (non-empty) string over the alphabet Σ. For each node,
the edges to its children must start with di�erent characters, that is, if u is a Σ+-tree node
with children v and w, then for the labels x and y of the edges u → v and u → w always
x1 6= y1 holds true.

A trie is a Σ+-tree that satis�es the condition that each edge label consists of exactly

32 CHAPTER 3. ALGORITHMIC FOUNDATION

e

l

p

p

r

a

h

c

a

p

a

y

aa

n

a

n

a

s

a

n

a

e

l

p

i

o

t

o

c

a

d

o

pn v

r

c

u

m

n

e

a

$

$

$ $

$ $

$

$

$

$ $

a b

e i l

p

Figure 3.2: The atomic tree (trie) with sentinel. The string pine is contained in the
database, whereas the string ban is not.

one character. Consequently, a trie is also called atomic Σ+-tree.
The concept is based on a proposal of de la Briandais [dlB59]. The name �trie� is

derived from the term retrieval, see Fredkin [Fre60]. Such a trie can easily be used as a
dictionary . To build the trie, the (non-empty) words are successively added by matching
the beginning of the word going downwards the current trie. If there is no matching edge
leaving the current node, then a new branch is added containing edges labeled with the
remaining characters of the word.

After the trie has been built, it is possible to answer queries that ask whether a given
word w = w1 · · ·wm is in the set of (non-empty) strings D = {s1, . . . , sk} which are
contained in the trie, that is, if there is an i ∈ [1, k] such that w = si. The method works
similar to the construction. The characters of w are matched against the labels of the trie,
beginning at the root node and looking for an edge that is labeled with w1, then traversing
this edge to the child node and again looking for the next character. If the search word
is exhausted by matching all symbols downwards along the trie edges, then w must be a
pre�x of a string in S. Thus, if the last node has any children, then w is a proper pre�x of
a word in S, otherwise w is obviously equal to one of the strings in S. If the search gets
stuck, then w cannot be contained in S, since otherwise the insertion of this word would
have produced a branch with the right symbol at the node after the last matching edge.

To state the result in a more explicit way, we emphasize that containment (i.e., equality
of the search string with one of the strings) in the trie can be detected correctly (in the
pre�x case) only if it is guaranteed that for all pairs of strings (si, sk) ∈ D ×D holds that
si is not a proper pre�x of sk. Assume the contrary and suppose the word �pineapple�

3.3. COMPACT Σ+-TREES (PATRICIA TREES) 33

m

u

e

l

p

p

e

n

r

a

h

c

lia

p

a

y

aa

n

a

n

a

b

s

a

n

a

e

l

p

i

o

t

o

c

a

d

o

pn v

p

r

a

c

e

a

Figure 3.3: The compact Σ+-tree for the words ananas, apple, apricot, avocado, banana,
papaya, peach, pear, pineapple, and plum.

is contained in the dictionary. If we are searching the string �pine�, we end up with
a completely matched pattern, but we do not know whether this is because �pine� is
contained in D, or this is only due to the word �pineapple�.

An easy solution to this problem is the introduction of a new (auxiliary) character
which must not be contained within one of strings in the dictionary (resp. the original
alphabet). This character, also called the sentinel , guarantees that each word si of the
dictionary D is represented by a leaf of the trie (see Figure 3.2).

After the trie for a set D of strings has been built in a preprocessing step, it serves the
main purpose of answering queries that ask whether a given search pattern p equals one
of the strings in D. The (worst case) time complexity of these queries depends only on the
size of the search pattern, it is independent of the size of the dictionary/database.

3.3 Compact Σ+-Trees (PATRICIA Trees)

A close relative of the trie is the Σ+-tree that results from merging the non-branching parts
of the trie. Allowing arbitrary (non-empty) edge labels, one can omit all nodes (except
the root) having exactly one child. This method is called path compression. The resulting
path-compressed Σ+-tree, independently developed at nearly the same time by Morri-
son [Mor68] and Gwehenberger [Gwe68], is also called PATRICIA-tree. Sometimes it
is also referred to as the compact(ed) trie/Σ+-tree. An example that relates to the previ-
ously given instances of tries, is given in Figure 3.3. Figure 3.4 shows the same tree, but
this time using a sentinel character ($).

34 CHAPTER 3. ALGORITHMIC FOUNDATION

e

l

p

p

r

a

h

c

a

p

a

y

aa

n

a

n

a

s

a

n

a

e

l

p

i

o

t

o

c

a

d

o

pn v

r

c

u

m

n

e

a

$

$

$ $

$ $

$

$

$

$ $

a b

e i l

p

Figure 3.4: The compact Σ+-tree for the words ananas, apple, apricot, avocado, banana,
papaya, peach, pear, pineapple, and plum using the sentinel $.

3.4 Su�x Tries and Su�x Trees

Besides deciding on the containedness of entire strings in a dictionary, the data structures of
the preceeding sections can be elegantly used to (repeatedly) answer the question whether
a given pattern p is contained as a substring within a �xed text t. Even further, they can be
augmented to data structures that e�ciently solve the problem of searching all occurrences
of a pattern p in a text t = t1 · · · tn.

For serving this purpose, it is assumed that a trie is built from a set of strings D that
comprises exactly the su�xes of t (including the complete text). The resulting trie is called
the su�x trie of t. It is easily seen that, using an equivalent matching procedure to the
normal trie, one can decide whether a given pattern p = p1 · · · pm is a pre�x of a su�x of t,
that is, whether p is contained as a substring within t. For an example, see Figure 3.5(a).

Once the su�x trie for t has been constructed in a preprocessing step, the complexity
of the search procedure does no longer depend on the length of t. It is linear in the length n
of the text t. The su�x trie can easily be augmented to also report the position of the �rst
(or last) occurrence of p in t. In this case, this value has to be stored within each of the
nodes.

If the positions of all occurrences have to be found, it must be ensured that all occur-
rences, or more precisely their corresponding su�xes of t, are uniquely represented by a leaf
of the trie. This is achieved using the sentinel approach described in the previous section.
Now, the whole subtree under the current node after matching all pattern characters has
to be traversed. For each leaf, the stored position is reported. A disadvantage of the su�x

3.4. SUFFIX TRIES AND SUFFIX TREES 35

a

n

a

n

a

sn

a s

s

s

s

s

a

n

(a) The su�x trie for the
word ananas.

a

n

a

n

a

sn

a s

s

s

s

s

a

n

(b) The su�x tree for the
word ananas.

a

ba

n

a

n

a

n

n

a

n

a

a

n

a

$

$

$

$

$

$

(2)

(1)

(3)

(4)

(6)

(5)

(c) The su�x tree for the
word banana$.

Figure 3.5: The su�x trie and the su�x tree for the word ananas. The su�x tree for the
word banana$ illustrates how the sentinel assures the existence of a leaf for every su�x.

trie is the fact that the number of nodes within a subtree is not linearly bounded by its
number of leaves, which corrupts the linear worst-case complexity of the query procedure
in this case.

This drawback can be �xed using the path compression technique of the compact Σ+-
trees (PATRICIA-trees). The tree that results from removing all non-branching nodes but
the root is consequently called the su�x tree. Except for the leaf nodes and (possibly)
the root node, the su�x tree contains only branching nodes, that is, nodes having at least
two children (see Figure 3.5(b)). An immediate important implication is the fact, that
the number of inner nodes of the tree is bounded by the number of leaves. An equivalent
statement holds true for each subtree.

The major drawback of su�x tries was the possibly quadratic size of the data structure
in terms of the text size. This behavior is shown, for instance, by the class of strings �aibi$�.
We already bounded the number of nodes (and edges) of su�x trees by a linear function
of the number of leaves, that is, by a linear function of the text size. Anyway, the overall
size of the representation can be quadratic since the edge labels do not have constant size.
This problem can be solved, if the original string is stored in a normal array, and each
edge label is represented by only two numbers: either a start and end index for the original
string array, or a start index and the corresponding length that marks a position of the
edge label in the array of the original string. Now, all edge labels have constant size. It
follows that the data structure is represented in memory using an amount of space that is
linear in the text size |t| = n.

As an instantaneous consequence, the worst-case time complexity for reporting all oc-
currences of a search pattern p = p1 · · · pm (by traversing the actual subtree after successful
matching) is O(m + k), where k denotes the number of occurrences of p in t, that is, the

36 CHAPTER 3. ALGORITHMIC FOUNDATION

number of leaves in the subtree of the current node after matching all characters of p.
For the time being, the linear size of the su�x tree does not imply that construction is

possible in linear worst-case time. On the contrary, at �rst sight it seemed to be impossible
to construct su�x trees within that time bound. Thus, it was quite surprising when
Weiner [Wei73] presented the �rst linear-time construction algorithm for su�x trees in
the early seventies. A little later, McCreight [McC76] presented a more space-e�cient
algorithm. A major drawback of McCreight's algorithm was the fact, that it constructed
the su�x tree beginning with the largest su�x, that is, the complete string. A consequence
was that the whole string had to be known in advance. This problem was solved two decades
later, when Ukkonen [Ukk95] presented another linear-time construction, that iteratively
constructs the su�x trees for increasing lengths of the text. Therefore, this algorithm is
said to work online, because it may compute the su�x tree for a growing text. We will
describe the algorithm in more detail within the next chapter where we (ab)use it in a
slightly changed variant to search for polypeptide structures.

An excellent review of these algorithms was written by Giegerich and Kurtz [GK97].
Further information can also be found in the book of Gusfield [Gus97]. For considerations
regarding implementation details, we refer to the papers of Andersson/Nilsson [AN95],
and Kurtz [Kur99].

Chapter 4

Searching in Protein Structure
Databases

The first question any structural biologist asks on
being told that a new structure has been solved

is no longer “What does it look like?”;
it is now “What does it look like?”.

Gregory A. Petsko [Pet91]

4.1 Previous Work on Structure Searching

In order to make pairwise comparisons practical for larger databases, classical methods like
CE [SB98], DALI [HS94], or VAST [GMB96] use a two-phase approach. The �rst phase
constitutes a �lter mechanism where a set of candidate proteins is generated. Various
strategies exist for this phase, including the alignment of larger parts of the molecule (such
as secondary structure elements, SSEs), comparison of intramolecular distance matrices,
comparison of feature pro�les (mostly geometrical or chemical property vectors), or combi-
nations of the methods. In the following re�nement phase, the remaining candidate set is
inspected by more intricate and time-consuming algorithms. This requires the candidate
set to be not too large. The set of reported positives (hits) is constructed, for example
by identifying matching backbone or Cα atoms and computing root-mean-square distance
(RMSD) values between the query and all candidate structures. In many cases, this pro-
cess involves the computation of an optimal alignment of the (pattern, candidate) pairs,
which is often implemented by some kind of dynamic programming algorithm. Due to the
quickly increasing size of structure databases, newer approaches further trade o� precision
for speed by cutting short this dynamic programming algorithm by certain heuristic stop
criteria. This immediately implies an additional loss in sensitivity.

It follows a short description of the most prominent existing tools that feature structure
database searching. Please note, that it cannot be �nally decided whether the main con-
cern of a tool is structure comparison, structure alignment, structure superimposition, or

37

38 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Name Data & Algorithm Reference
3D-Hit 3D-fragment hashing [PPvGR02]
CE combinatorial extension of fragment align-

ments
[SB98]

DALI intra-molecular distance matrices, hexapep-
tide regions, matrix alignment, Monte Carlo
method for full alignment

[HS93, HS94, HS96]

DEJAVU intra-molecular distance matrices, vector-
represented SSEs

[KJ97, MK02]

FATCAT dynamic programming on AFPs [YG03, YG04a, YG04b]
FoldMiner alignment of secondary structure elements [SB04b, SB04a]

Jess range queries in a kd-tree [BT03a]
MATRAS Markov model, environmental score, residue-

residue distance score, SSE score
[KN00, Kaw03]

PRIDE, PRIDE2 distribution of Cα
i − Cα

i+k distances [CP02, GVP05]
ProGreSS multidimensional index of feature vectors ex-

tracted from sequence and structure
[BCK+04]

PAST/ProSt dihedral angle based su�x tree (this work) [BT03b, BTG03, TBG04]
ProtDex, ProtDex2 fast �ltering by indexing structures, precom-

puted feature vectors
[AFT03, AT04]

ProteMiner search for similar binding sites [CCC+04]
PROuST hash table based on geometric features of

SSE triplets
[CGZ04]

PSI feature vectors on triplets of SSEs [ÇKS03a, ÇKS03b]
PSIST normalized local geometric feature vectors

indexed by a su�x tree
[GZ05]

SPASM intra-molecular distance matrices of Cα car-
bons, DFS

[KJ97, Kle99, MK02]

SSM alignment of SSEs [KH04]
TESS geometric hashing [WBT97]
TOP alignment of SSE subsets [Lu00]
TOPS comparison of topology diagrams of SSEs [GWNT99, MTGW04]
TopScan SSE-based topology strings [Mar00]
VAST graph-based SSE alignment [GMB96]

YAKUSA Cα virtual bond angles (τ) and virtual bond
torsion angles (α), DFA-based scan of the en-
tire database to �nd SHSPs followed by rank-
ing

[CBP05]

Table 4.1: Overview of Protein Structure Comparison and Searching Tools

4.1. PREVIOUS WORK ON STRUCTURE SEARCHING 39

structure searching. These topics are tied together rather closely. Thus, some of the tools
we mention here are alignment or comparison programs which were (ab)used to perform
structure searches.

DALI [HS93, HS94, HS96] (Distance matrix ALIgnment) seems to be one of the most
cited and used tools to perform structure alignments, comparisons and searches in the
molecular biology community. The method represents each structure by a matrix of intra-
molecular atom distances. This idea already dates back to the work of Phillips [Phi70].
The matrix stores the distances of all pairs of atoms within a molecule. To simplify matters
and to allow comparison of matrices for structures having di�erent amino acid sequences,
not all atoms, but only the Cα atoms (or alternatively all backbone atoms) are used for
the distance map. An advantage is the invariance against the frame of reference (the
position and orientation in the actual coordinate system). A disadvantage can be the equal
representation of enantiomers. Since these isomers are mirror images of each other, they
share a common distance behavior and cannot be distinguished by this kind of approach.
DALI is used to maintain the FSSP [HS97] database by exhaustive all-against-all structure
comparison and hierarchical clustering.

Overlaying the matrices of di�erent structures can detect similarity along the main
diagonal, which means backbone conformation (that is, secondary structure). O�-diagonal
similarity may indicate more or less similar distances of atoms that are more distant within
the sequence (that is, tertiary structure). Major advantages are that gaps of arbitrary
length are allowed, as well as the reversal of chain direction and free topological connectivity
of the aligned segments.

Later on, a modi�ed version using a fast look-up [HS95] was introduced that utilizes
alignments of secondary structure elements (SSEs) and shares some similarity with VAST
(see below).

SPASM [Kle99, MK02] (SPatial Arrangements of Side-chains and Main-chain) is one
of the few (very useful) programs to specialize in �nding functional motifs. It is a two phase
method, based on intra-molecular distance matrices of Cα carbons and, for non-glycine
residues, by pseudo atoms at the center of gravity for each side chain. A simple recursive
depth-�rst search (DFS) algorithm is used, which was originally used for the automatic
assignment of two-dimensional and three-dimensional 1H NMR spectra of proteins, and
later in the fold recognition toolDEJAVU [KJ97, MK02] using early pruning of the search
tree. The SPASM tool allows to apply several options on the search process. The user
may choose whether only Cα carbons, only the side-chain pseudo-atoms, or all (pseudo)
atoms should be used. The residues may be restricted to be of the same type, to be in a set
of allowed substitutions, or of arbitrary types. The search can be further constrained by
restricting the search to the same sequence order. Another option restricts the result sets
to preserve the direct sequence neighbor relationship. Furthermore, conserved gap lengths
between matched residues can be requested. It should be mentioned, that SPASM's ability
to handle arrangements of non-consecutive residues is a major advantage in searching
functional constitutions such as the catalytic triad.

40 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

VAST [GMB96] The Vector Alignment Search Tool is a protein comparison tool that
looks for pairs of secondary structure elements (SSEs) that have similar type, relative
orientation, and connectivity. The likelihood that this similarity would be seen by chance
rates the signi�cance of the considered matches.

YAKUSA [CBP05] (Yet Another K-Uples Structure Analyser) is a software that uses
a deterministic �nite automaton (DFA) in a BLAST-like search for structural high-scoring
pairs (SHSPs). First, the DFA describing similar structures is built. Afterwards, the DFA
searches the pattern in all structures of the database, then the found patterns are extended
to yield the SHSPs. After selecting compatible SHSPs for each pair of query and database
structure, they are ranked according to SHSP similarity, SHSP probabilities, and spatial
compatibility of the SHSPs. The method uses discretized virtual bond (τ) and virtual
bond torsion (α) angles [Lev76] to describe the protein structure.

For a comparison of di�erent aspects of these approaches, see the reviews of Bourne /
Shindyalov [BS03], Novotny et al. [NMK04], and by Sierk and Kleywegt [SK04].

The approaches described above share some common drawbacks. The candidate selec-
tion in the �lter phase sacri�ces accuracy for speed by relying on abstractions like distance
matrices, SSE topology or feature vectors. Additionally heuristics are often employed to
ignore unlikely database entries. Yet the methods of the re�nement phase generally remain
very expensive, restricting the �lter phase to a small candidate set. As a consequence the
user is left with the choice of accepting a very slow response to his query or greatly increas-
ing the risk of pruning true positives in the �lter phase. Furthermore, by relying on such
features as SSEs, areas of high local similarity (functional motifs) may remain unidenti�ed.
This is most unfortunate since the functional motifs determine a protein's function to a
large degree.

Further methods for aligning, comparing and searching (sub)structures were published
in [NO74, RA76, Les79, MR85, ZS89, JOE+94, HLS+95, God96, WLT96, ZKS96, AOI97,
Fin97, Toh97, GWT98, LKSD00, PGR+01, CL02, GLZ02, IDP+02, CHTY03, JHF03,
OKA03, PRS03a, PRS03b, SH03, Zem03, PR04a, PR04b, PR04c, SDSD+04, YJL04, YG05,
CFK+05, ZW05]. The query complexity of the most tools scales linearly with the size of
the database. Hence, they are by far too slow for interactive working! Often they trade
accuracy for speed.

4.2 Drawbacks of Current Methods

As we have seen from the description of the Protein Data Bank in the introductory chapter,
there has been accumulated a huge number of structures which is much more than what
could be maintained by only a single person. In contrast to the �rst years of the PDB,
it is now completely impossible, even for experts, to know about all structures contained
in the PDB that are related to a certain established subject of molecular biology. It has
simply become very hard to keep pace with the growth of the database.

This statement implies that all researchers working with PDB data must resort to
using automated search tools that �lter the content of the database according to speci�ed

4.2. DRAWBACKS OF CURRENT METHODS 41

criteria. These criteria mainly comprise three categories: text searching in the annotation
(context information) of the database entries, searching speci�ed amino acid sequences or
parameterized sequence patterns, and structure or substructure searching.

4.2.1 Text Searching

The easiest method to �nd structures that are related to a certain keyword is to apply a
full text search on all context information contained in the database. But, everyone who
has ever performed such a text search in a real life situation, for instance using one of
the WWW search engines (like Google, Yahoo, etc.), knows about the problems that are
associated with this approach. Usually, the result set is either empty or very large, and
it is not easy to rank the hits such that the most signi�cant ones are presented �rst. If
the user considers searching for several keywords at once, it ends up most of the times
that not a single hit is found because in many of the potential hits at least one of the
words is missing. Then the question arises which of the subsets of keywords are considered
su�cient. The union of all answers is mostly a long term that no one wants to deal with.

In some of the cases a potential target entry is not found due to an ambiguity of
the term, that is, the respective document contains only a synonym of the given search
term. That is particularly fateful for searching biochemical compounds because there are
systematic names and common names that relate to the same molecule. Some of the
molecules also have old (obsolete) names besides their currently used denomination. In
some cases there are two ore more common names in use, and even systematic names are
sometimes ambiguous. Furthermore, there exists an abbreviation (or several of them) for
the majority of the molecule names (since the complete name is usually too long). The
problem can only be solved by a dictionary of synonyms, but this seems to be an unrealistic
wish for the matter of molecular biology (at least from today's point of view).

Sometimes, it happens that the target of the search has no name at all. This is par-
ticularly true if we consider searching parts of molecular structures. These substructures
usually have a dedicated name only in the case where they have an associated function or
if they are already known to be frequent substructures.

A particularly nasty problem occurs, if the search term is used within database entries
of other structures to state some degree of relatedness or interaction, or, even worse, to
state that the search term should not be confused (or does not interfere etc.) with the
entry in consideration. Just this remark, that explicitly introduces a distinction to the
search term, is taken to be a hit indicator within a full text search. For proteins, there are
usually many interaction partners (that are referenced within the entry), which is a major
drawback of the text searching approach.

Another problem occurs, if one is interested only in a speci�c form of a molecule. As
an example, hemoglobin is able to bind a di�erent number of oxygen atoms, where the
structure di�ers for each of the binding states. If we wanted to search for all hemoglobin
structures where a �xed number of oxygen atoms is bound (that is, with a �xed conforma-
tion), we would rely on the correct chemical designation, which leads to a problem already
discussed.

42 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

4.2.2 Searching Amino Acid Sequences

A second approach to searching in biomolecular databases can be applied if the pri-
mary structure (that is, the sequence of bases or nucleic acids, see Chapter 2) of the
molecule or a close relative is known in advance. In this case, one of the classical pat-
tern matching and alignment algorithms can be applied to �nd similar sequences more or
less e�ciently. Algorithms that solve the exact search problem were listed in the previ-
ous chapter. Algorithms that solve an approximate matching problem (that is, �nding
a similar but not necessarily equal sequence) are usually based on a solution of the op-
timal pairwise alignment problem, but these algorithms (for instance, the classical algo-
rithms by Needleman and Wunsch [NW70], and by Smith and Waterman [SW81],
see also [Got82, GG89]) are in principle very slow. Faster solutions utilize indexing tech-
niques [Ukk93, Cob95, NBYST01, HAI02].

It appeared that popular methods that utilize various heuristics for �ltering are much
faster in practice (for instance the FASTA family of programs by Lipman and Pear-

son [LP85, PL88], and BLAST [AGM+90] by Altschul et al.) Their great advantage,
the �lter step that sacri�ces sensitivity of the search for speed, is, at the same time, a great
handicap. This means, there is no guarantee to �nd a near-optimal solution. Unfortu-
nately, it has become a habit in the molecular biology community to rely on the results of
these heuristic algorithms without questioning whether the result set contains all possible
solutions. It must be emphasized that these programs have signi�cant problems in detect-
ing distant functional relationships of biopolymers where only weak sequence identity is
present (q.v. [Pea97, Ros99]). They often miss out the hits that have only few amino acids
in common. We learned from the introductory chapter that structure is more preserved
than the pure amino acid sequence because structure determines function, and quite
di�erent sequences may result in very similar structures! According to a statement of
Levitt and Gerstein [LG98], the structural comparison can detect approximately twice
as many distant relationships as sequence comparison at the same error rate. The evolu-
tionary e�ect, that development alters the sequence while the structure is kept the same, is
called divergent evolution. The consequence must be to take structure-based aspects into
consideration wherever this is possible.

4.3 Evaluation of Service Quality

At this point we should note, that usually, the performance of search algorithm is measured
in terms of quality and time consumption. While the elapsed time for the search process can
be easily measured, the (absolute) quality of the result set is hard to assess, since quality is
mostly measured by the quantities sensitivity, speci�city, and precision (positive predictive
value). These are expressed in terms of true positives (correctly identi�ed hits), false
positives (spurious hits), true negatives (correctly identi�ed non-hits), and false negatives
(matching target entries that were not reported as hits). All four values partition the
database entries according to the decision of the search procedure, and thus add up to the
total number of entries.

sensitivity =
number of true positives

number of true positives + number of false negatives

4.4. THE POLYPEPTIDE ANGLES SUFFIX TREES 43

speci�city =
number of true negatives

number of true negatives + number of false positives

precision =
number of true positives

number of true positives + number of false positives

Thus, the calculation of each of the three measures requires knowledge of either the absolute
number of true positives or the absolute number of true negatives. In most cases, such
a perfect partition of the database is impossible to compute due to complexity of the
exact algorithms and the large size of the database. What remains is a direct (relative)
comparison of the search results for di�erent tools.

4.4 The Polypeptide Angles Su�x Trees

4.4.1 Construction of the Su�x Tree

For the moment, let us assume we want to search a pattern sequence p = p1 · · · pm of
length m within a single longer text t = t1 · · · tn of length n. We use the su�x tree
construction of Ukkonen that computes the series of su�x trees for the growing text,
that is, for pre0(t), pre1(t),. . . , pren(t) = t. This makes it amenable to a setting where
the characters of the string become known one by one over time and the current su�x
tree is updated to become the su�x tree for the extended text. This so called online
property is in contrast to the former linear-time algorithms. McCreight's algorithm
inserts the su�xes in order of decreasing length into the Σ+-tree, starting with sufn(t)
and lastly adding suf1(t). The intermediate Σ+-trees do not constitute su�x trees. The
same applies to the algorithm of Weiner1, whereas this algorithm inserts the su�xes in
order of increasing length from sufn(t) to suf1(t). In both, McCreight's and Weiner's
algorithm, the whole string has to be known in advance, since the last character is involved
in the �rst step of the algorithm. Since we will need the (slightly changed) property of online
construction, we stick to the Ukkonen algorithm although there are minor performance
advantages for the McCreight algorithm, see [GK97].

For later use, we de�ne a substring s of t to be right-branching in t, if there are
di�erent characters x, y ∈ Σ, x 6= y, such that sx and sy are substrings of t. Obviously,
all su�xes suf i(s) of a right-branching substring s are right-branching too (with respect
to t).

A central role in the concept of all linear-time su�x tree construction algorithms play
su�xes that also occur in another position as a substring of t. These su�xes are called
nested . The crucial point is, that nested su�xes are not represented by leaves within the
su�x tree. As already discussed in the previous chapter, we therefore assume the text to
end with a sentinel character $. Thus, no non-empty su�x of t is the pre�x of another

1Please note, that Weiner used a di�erent naming convention, where the terms su�x tree and pre�x
tree are interchanged.

44 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

su�x, or, using the notation above, the text t$ has no nested su�x, except for the empty
string.

A simple observation reveals that all su�xes of a nested su�x suf i(t) are also nested,
since the occurrence at position k in t

suf i(t) = pre|suf i(t)|(sufk(t)) (k < i)

can be written as
ti · · · tn = tk · · · tk+n−i

and implies that
∀l ∈ [1, n− i+ 1] : ti+l · · · tn = tk+l · · · tk+n−i

which means

∀l ∈ [1, |suf i(t)|] : suf i+l(t) = pre|suf i+l(t)|
(sufk+l(t))

that is, every su�x suf l(suf i(t)) of the su�x suf i(t) occurs as a pre�x of some su�x of t,
namely the su�x sufk+l(t).

Consequently, the set of nested su�xes can be characterized by the longest nested su�x,
which is called the active su�x , denoted by α(t). The active su�x can be represented by
the respective node in the (atomic) su�x trie that is determined by the usual matching
procedure (that is, the node whose path from the root is labeled by the active su�x). But,
since we are dealing with (compact) su�x trees, this node might correspond to a (virtual)
implicit node which is located on an edge because the su�x trie node is not branching.
Therefore, this implicit node is described by an (existing) explicit node v together with a
string x such that the label of the path from the root node to v, concatenated with x (the
labels of the path from v to the virtual position) equal the active su�x:

α(t) = label(rootNode, v) + x

The combination of the explicit node v and the label x is called a reference pair (v, x).
The reference pair having the shortest string x ∈ Σ∗, that is, the representation relative to
the deepest possible explicit node v, is called the canonical reference pair .

To simplify the description, we introduce the following notation: For a string s, s
denotes the explicit or implicit location whose path from the root node is labeled with s.
Furthermore, it is most convenient for the construction and for some applications of su�x
trees to extend the nodes of the tree by pointers called su�x links [Ukk95]. These pointers
implement the su�x function for explicit nodes s, that is de�ned for a string s ∈ Σ∗, as
follows:

f(s) =

{
⊥, if s = ε
s′, s.t. s = xs′ with x ∈ Σ, s′ ∈ Σ∗, otherwise (s ∈ Σ+)

where ⊥ is an extra node that can be interpreted as kind of an error state, if the su�x tree
is viewed as a deterministic �nite automaton (DFA) with states and labeled transitions.

4.4. THE POLYPEPTIDE ANGLES SUFFIX TREES 45

This auxiliary state helps to avoid separate treatment for the root node compared to the
other nodes (which corresponds to empty and nonempty su�xes). It has a transition to
the root node (ε) for each character of the alphabet. The su�x function of the error node
f(⊥) is left unde�ned.

Su�x links are the concrete implementation of the su�x function for explicit nodes.
Hence, the su�x link of the root node is the error node (⊥). For a non-empty string s = xs′

that consist of a character x ∈ Σ and a string s′ ∈ Σ∗, let xs′ be an explicit node of a su�x
tree T . The su�x link of x = xs′ is then de�ned to be

su�xlink(xs′) = s′

It can be shown, that this su�x link is well-de�ned for the su�x tree of t$, since it
is always an explicit node: xs′ is either a branching node or a leaf. Thus, xs′ is either
right-branching, then s′ is right-branching too, or xs′ is a non-nested su�x of t$, then the
same holds for s′. Hence, s′ is an explicit node in the su�x tree of t$. If the sentinel is
left out, the su�x function f(s) = f(xs′) = s′ of a leaf s could refer to a substring s′ that
is nested and not right-branching, such that s′ is not an explicit node. (All other cases of
su�x links remain faultless.)

Before we proceed to the �nal su�x tree construction, we have a look at the concept
using the su�x trie. The algorithm iteratively constructs su�x tries T ′

i for growing pre-
�xes prei(t) of the text, starting with the �rst trie T ′

0 for ε (being just the root node
with no edges), transforming it into T ′

1 for t1. In each iteration, T ′
i+1 is constructed from

T ′
i by extending all su�xes by the new character ti+1. To avoid repeated searching for
the correct node for each su�x, the su�x links are used that point from sufk(prei(t)) to
sufk+1(prei(t)) after the iteration of pre�x prei(t). Thus, we just store the largest su�x
and extend the su�xes by traversing them along the su�x links. The traversal ends at
the root node, but can be interrupted earlier, if we �nd a nested su�x. In this case, no
further nodes have to be created and all further su�xes are nested too. The concept of
one iteration is shown in Algorithm 1.

The algorithm that constructs the su�x tree works, in principle, the same way. Of
course, the main di�erence is, that nodes having only one child are no longer in the tree
(except for the root). They are implicit nodes. Thus, we only create new nodes that are
leaves or have at least two children. To serve this purpose, the su�xes of each iteration
are distinguished in three categories:

1. su�xes, that are nested in t1 · · · ti, and in t1 · · · ti+1 too (irrelevant su�xes),

2. su�xes that are nested in t1 · · · ti, but non-nested after the extension by ti+1 to
t1 · · · ti+1 (relevant su�xes).

3. su�xes that are not the pre�x of another su�x (non-nested su�xes),

The non-nested su�xes are represented by leaves. Since they cannot be nested in later
iterations, the only problem to solve is the elongation of edge labels that point to leaves.
This was elegantly solved by Ukkonen via the open edge concept. The length �eld or end

46 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Algorithm 1: constructSu�xTrie(T ′
i , lsufi)

Input: t // the text

T ′
i // the suffix trie of the previous iteration

lsuf // the pointer to the longest suffix suf1(prei)

Result: T ′
i+1 // the suffix trie for prei+1(t)

lsuf // the pointer to the longest suffix suf1(prei+1)

v ←− lsuf
p←−⊥ ; // the predecessor

while v 6=⊥ do
// Extend suffix v
if @ child w of v with edge label ti+1 then

Create node w with edge (v, w) labeled by ti+1

if p 6=⊥ then
(p→ su�xlink)←− w

else
lsuf←− w

p←− w
v ←− (v → su�xlink)

else
if p 6=⊥ then

(p→ su�xlink)←− w
v ←−⊥

return

4.4. THE POLYPEPTIDE ANGLES SUFFIX TREES 47

index of the edge label stores a special �ag for indicating the open-edge property, which
means, the edge extends to the end of the currently treated su�x. If the su�x tree is
updated with the i-th character (ti), the edge extends exactly to this point. This method
prevents the elongation of all leaves in each iteration. Once a leaf is created, it grows
without explicit manipulation.

The �rst type of su�xes are easy to handle. As in the case of su�x tries, nothing has
to be done for su�xes that keep being nested during one step.

In each iteration, the empty su�x is added, which is always nested, and thus of the
�rst category. Afterwards it grows, and in the iteration before it gets nested, it is of the
second category. In all following iterations it is non-nested, that is, of the third category.

Thus, the critical point is the transition from nested to non-nested su�xes. Therefore,
they are called relevant su�xes . We only need to store the longest nested su�x (the
active su�x, see above), because all shorter su�xes are nested, whereas all longer su�xes
are non-nested. As has already been mentioned, the active su�x is represented by the
canonical reference pair. The algorithm checks by calling the function testAndSplit(),
whether the active su�x is nested after the current iteration. This is true, if the node of the
reference pair (the reference node, pointer refnode in the algorithm) has an edge starting
with tre�dx that has character ti+1 at position reflen+1. In this case, the function returns
the pointer to the auxiliary node. Otherwise, it creates such a node by splitting the edge
that starts with tre�dx (if it exists) after reflen characters. In the case, where reflen is
zero, nothing has to be done.

In any case, testAndSplit() returns either the auxiliary node (⊥), or the node, that
should be extended with the new character. In the �rst case, a match was found, and thus
reflen is incremented and the reference pair is updated to the new canonical reference pair.
In the latter case, a new node is added (as child of the returned node) which represents the
relevant su�x. Furthermore, the reference pair is updated to the next (shorter) su�x by
ignoring its �rst character. This can be done by replacing the reference node by the target
node of its su�x link. After making the reference pair canonical again, the algorithm
restarts with the nested-test. The iteration ends when the active su�x is no longer a
relevant one.

Please note: the function that updates the reference pair to yield a canonical reference
pair (canonize()) has not to look at every character for each traversed edge. Since the
reference pair always points to a nested su�x, the respective string already exists in the
su�x tree. Hence, only the �rst character of each traversed edge is needed to �nd the
correct child of the current node. The function descends in the tree by matching the active
su�x until this string is exhausted. The node that succeeds the last completely matched
edge is made the new reference node (while simultaneously updating the variables refidx
and reflen).

The total number of operations is bounded by a linear function of n:

• There are n+ 1 iterations (one for each character of t, one for the sentinel).

• testAndSplit() needs only constant time for a canonical reference pair.

48 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Algorithm 2: constructSu�xTree(Ti, refnode, re�dx, re�en)

Input: t // the text

Ti // suffix tree of the previous iteration

refnode // node of the reference pair for active suffix i
re�dx // index of the reference pair for active suffix i
re�en // length of the reference pair for active suffix i

Result: T ′
i+1 // suffix trie for prei+1(t)

refnode // node of the reference pair for active suffix i+ 1
re�dx // index of the reference pair for active suffix i+ 1
re�en // length of the reference pair for active suffix i+ 1

current_length ←− current_length +1 ; // enlarge the open edges

v ←− testAndSplit(refnode, re�dx, re�en, ti+1)
p←−⊥ ; // the predecessor

while v 6=⊥ do
// Extend suffix v and go to next active suffix

Create new node w
Establish new open edge (v, w) with label ti · · · t∞
if p 6=⊥ then

(p→ su�xlink)←− v
p←− v
refnode←− su�xlink(refnode)
canonize (refnode, re�dx, re�en)
v ←− testAndSplit(refnode, re�dx, re�en, ti+1)

if p 6=⊥ then
(p→ su�xlink)←− refnode ; // new nodes were added

re�en←− re�en + 1
canonize (refnode, re�dx, re�en)
return

4.4. THE POLYPEPTIDE ANGLES SUFFIX TREES 49

$1

$2

$1

$1

$2

$2

$2

$1

$2

$1

$2

$1

sn

a

s

aa

n

a

n

a

sn

a

n

a

s

nba

s

s

Figure 4.1: The generalized su�x tree for the words ananas and banana. The sentinel $1
marks the leaves of ananas, whereas $2 indicates the leaves of banana.

• The number of while-block executions is n+ 1, because in each iteration, a new leaf
is created, and the su�x tree has exactly one leaf per su�x or per symbol.

• canonize() is executed 2(n+1) times (only once per iteration outside of the while-
block, and only once per while-block execution). Within this function (see Func-
tion 4), the while-loop decrements the reference length (reflen) at least by one.
Since each iteration of the main function increments reflen (a non-negative vari-
able), there can be at most n+ 1 iterations of the while-loop in canonize().

• There are no other non-constant parts of the algorithm.

Hence, the worst-case time complexity of the overall su�x tree construction algorithm is
in O(n).

4.4.2 Generalized Su�x Trees

Su�x trees can be extended to the case where more than one text (that is, a set of
sequences) has to be stored for searching. Consequently, these Generalized Su�x Trees
(abbr. GST) can be used as indexing structures for sequence databases.

To check the existence of substrings in a string contained in the database, it would be
su�cient to simply append all strings to a long sequence, and to build the su�x tree for
that sequence (using a sentinel after each of the strings). Searching by the usual matching
procedure would not only give an answer to the existence of the search pattern, it would
also reveal the position within the long string. But, this is not what we want to know.
Usually, we are interested in the identi�er of the sequence, where the hit occurred, as well
as the position with respect to that sequence. It would take too much time to determine
these values from the global position. Furthermore, we want to know all occurrences of
the search pattern.

50 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

1
2

1
2

2

1
2

$

baa

ba

21

a$ ba$

b $

Figure 4.2: Generalized su�x tree for the strings aba and abba.

The latter problem could be solved by using a di�erent sentinel $i for each sequence si.
Though, this can dramatically increase the size of the resulting alphabet, and thus, lead to
an enormous waste of memory. For the moment, we adopt this model. Later, we will show
how to implement it in a space-saving way. The su�x tree construction algorithm can now
be applied successively to all of the input sequences. Due to the sentinel characters, all
su�xes of each sequence are represented by a leaf in the GST. Figure 4.1 illustrates an
example of the approach.

The resulting generalized su�x tree can be used, for instance, to search substrings in
the usual way, to �nd longest common substrings of structure sequences, or to compute,
for each substring, the number of di�erent sequences that contain this substring [Hui92].

More information on generalized su�x trees can be found in the paper by Bieganski
et al. [BRCR94] and in Gusfield's book [Gus97].

4.4.3 Implementation Issues

Sequence identi�ers and edge label storage We augment the nodes of the su�x tree
by a sequence identi�er that gives us access to the desired information of the occurrences.
For convenience, we assume that label information of all edges representing the transition
from a parent node to a child node, is stored within the child node. This does not violate
the condition of constant size nodes, because the underlying graph is a tree, and thus, each
node has only one incoming edge from a parent.

Storage of child pointers For the implementation of child edges there are several
conceivable variants. The pointers to the children can be implemented by an array: one
entry for every possible character of the alphabet (which marks the �rst character of the
edge label). An array allows direct access of the entries by using the character code for
indexing, and is thus very fast. From the viewpoint of memory consumption, this variant
would be quite e�cient for the �rst (upper) levels of the tree, but it would waste most of

4.4. THE POLYPEPTIDE ANGLES SUFFIX TREES 51

Algorithm 3: GenSu�xTree::insertSequence(newString)

Impl. Arg.: strings // access to all strings of the GST

s // access to the current string

current_stridx // the index of the current string

current_length // working length of the current string

refnode // the node of the reference pair

re�dx // the start index for the reference pair label

re�en // the length of the reference pair label

Expl. Arg.: newString // the sequence to be added to the GST

Result: The given string is added to the GST.

strings.store (newString)
s ←− address of current string
refnode ←− rootNode
re�dx ←− 0
re�en ←− 0
rootNode→stridx ←− current_stridx
int len ←− newString.size ()
for int i ←− 0; i < len; i++ do

current_length ←− i
v ←− testAndSplit (s[i])
p ←− errorNode
while v 6= errorNode do

w ←− new_STnode ()
w→stridx ←− current_stridx
w→start ←− i
w→end ←− len-1 ; // for real online application use OPEN_EDGE

if s[i] = SENTINEL and
(currentChild ←− searchChild (v→children, SENTINEL)) 6= NULL then

w→su�ink ←− currentChild
replaceChild (&(v→children), SENTINEL, w)
currentChild→next ←− NULL

else
w→su�ink ←− NULL
insertChild (&(v→children), w)

if p 6= errorNode then
p→su�ink ←− v

p ←− v
refnode ←− refnode→su�ink
canonize ()
v ←− testAndSplit (s[i])

if p 6= errorNode then
p→su�ink ←− refnode

re�en++
canonize ()

return current_stridx++ ; // increment after return value!

52 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Algorithm 4: GenSu�xTree::canonizeRefPair()

Impl. Arg.: strings // access to all strings of the GST

s // access to the current string

current_stridx // the index of the current string

current_length // working length of the current string

refnode // the node of the reference pair

re�dx // the start index for the reference pair label

re�en // the length of the reference pair label

Expl. Arg.: �

Result: The reference pair is made canonical.

if re�en > 0 then
if refnode =⊥ then

refnode←− rootNode
re�en←− re�en− 1
re�dx←− re�en + 1

if re�en > 0 then
v ←− searchChild(refnode→children, s[re�dx])
if v→end = OPEN_EDGE then

if v→stridx = current_stridx then
l ←− current_length − v→start +1

else
l ←− strings[v→stridx].size() − v→start

else
l ←− v→end − v→start +1

while (re�en> 0) and (l ≤ re�en) do
refnode←− v
re�en←− re�en − l
re�dx←− re�dx + l
v ←− 0
childIt ←− searchChild(refnode→children, s[re�dx])
if childIt 6= NULL then

v ←− childIt
if v→end = OPEN_EDGE then

if v→stridx = current_stridx then
l ←− current_length − v→start +1

else
l ←− strings[v→stridx].size() − v→start

else
l ←− v→end − v→start + 1

return

4.4. THE POLYPEPTIDE ANGLES SUFFIX TREES 53

Algorithm 5: GenSu�xTree::testAndSplit(x)

Impl. Arg.: vector<string>& strings // access to all strings of the GST

STnode& refnode // the node of the reference pair

int re�dx // the start index for the reference pair label

int re�en // the length of the reference pair label

Expl. Arg.: char x // the first character of the edge

Output: the parent node for the new child (or the errorNode)

if refnode = errorNode then
return errorNode

if re�en = 0 then
if not searchChild(refnode→children, x) or (x = SENTINEL) then

return refnode // no such edge/child or new leaf

else
return errorNode // normal edge/child exists

curNode ←− searchChild(refnode→children, s[re�dx])
if curNode 6= ⊥ then

if (strings[curNode→stridx][curNode→start + re�en] = x) and
(x 6=SENTINEL) then
return errorNode // match, nothing to do

else
splitNode ←− new_STnode()
splitNode→stridx ←− curNode→stridx
splitNode→start ←− curNode→start
splitNode→end ←− curNode→start + re�en - 1
splitNode→next ←− ⊥
splitNode→children ←− curNode
splitNode→next ←− curNode→next
replaceChild(&(refnode→children), s[re�dx], splitNode)
curNode→next ←− ⊥
curNode→start ←− curNode→start + re�en
return splitNode

return refnode

54 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

the available space in the deeper levels, because the branching degree of the nodes usually
decreases with increasing node level. Most of the entries would be empty (meaning there
is no such child whose edge label starts with the respective character).

An alternative would be to use a search tree. This option would present a compromise
between access time and memory usage. Using a hash map would be possible too.

We emphasize the memory aspect and implement the GST using single-link lists of
children. They only need space for existing child pointers. For access, we have to go
through all entries to �nd a child pointer (or to learn, that no such child exists) in the
worst case; but, as has been mentioned above, most of the nodes that reside in the GST,
have only very few children (see also Figure 4.21). Some time can be saved by sorting
the pointers according to the encoding of the alphabet. Then the search for a child with
�rst character x on the edge label, can be canceled, if some greater character y > x is
encountered. (This introduces slightly more work for the insertion of a new child, but,
since we intend to search repeatedly, this approach might pay o�.)

Leaf lists Note that, occasionally, two or more sentinels of di�erent sequences could be
edge labels for children of the same node. In extreme cases, this would mean to have a lot
of child pointers which would be very unfortunate in some of the searching and traversing
algorithms. We elude this problem, using the fact that, in this case, these children would
be leaves. As luck would have it, leaves usually do not have su�x links stored. Hence,
we store only one child that ends with a sentinel; the remaining children of this kind are
stored as a linked list via the su�x link pointer.

Creation of new nodes Since the number of nodes is not known in advance they must
be created dynamically. These memory chunks, usually created with the new operator, are
allocated in the dynamic memory (the heap). For reasons of memory management, each of
these chunks would allocate some additional amount of space to store the size of the data
structure. (This is needed for deleting the records afterwards.) This signi�cant overhead
of memory usage, has two disadvantages: it is slow and it wastes memory. Therefore we
request memory from the system in larger chunks of prede�ned size, and get an appropriate
piece for each new record using the function new_STnode(). A pointer to the next free
entry is maintained. If a whole chunk has been exhausted, a new one is requested from
the system.

Semi-online construction Our setting of the search problem will not require the gen-
eralized su�x tree to be constructed online character by character. We only wish to add
complete strings in case there are new entries in the database. Therefore, we modify the
construction algorithm by storing the full length of the respective string already at the
time of creation of the leaves. This avoids the overhead which is due to the treatment of
the open edge �ag.

Further information on e�cient implementation of su�x trees and related structures
can be found in the work of Andersson / Nilsson [AN95], and Kurtz [Kur99].

4.5. STRUCTURE AND FEATURE REPRESENTATIONS 55

0

+150
180

+30

+90−90

−30

−150

per

per

clicli

(a) periplanar / clinal

0

+150
180

+30

+90−90

−30

−150

syn

anti

(b) syn / anti

0

+150
180

+30

+90−90

−30

−150

posneg

(c) positive / negative

0

+150
180

+30

+90−90

−30

−150

sp

ap

+sc

+ac

−sc

−ac

(d) scheme

Figure 4.3: Torsion angle classi�cation by Klyne and Prelog.

4.5 Structure and Feature Representations

4.5.1 Computation of Bond Angles

In search for structure descriptions that are independent of the coordinate system, an
obvious measure besides atom distances are angles. A simple bond angle α between two
neighboring bonds A − B and B − C can be calculated from the positions of the three
atoms A, B, and C via the normalized dot-product of the two bond vectors:

α = arccos

(
(~a−~b) · (~c−~b)

||(~a−~b)|| · ||(~c−~b)||

)

4.5.2 Formal De�nition and Computation of Torsion Angles

A torsion angle measures the torsion of two atoms that are attached to the opposite ends of
a central bond. Looking from one side along the axis of the central bond B−C, the torsion
angle is the angle by which the projection of the B − A bond into a plane perpendicular
to B − C must be turned in order to overlay the projection of the C − D bond. Klyne
and Prelog [KP60] proposed the syn/anti clinal/periplanar terminology to describe the
steric relationship across a single bond of conformational isomers (also called rotamers).
This scheme is illustrated in Figure 4.3. We follow their convention of giving the torsion
a positive sign if the rotation of the B − A bond is clockwise to overlay the C −D bond
when looking along the axis from C towards D. Counterclockwise rotation clearly gives a
negative value. The torsion angle of the four atoms is closely related to the dihedral angle,

56 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

which measures the angle between the planes ABC and BCD (or between their crossing
normals n1 and n2). For a formal de�nition of the dihedral angles the following di�erence
vectors of the atom positions are de�ned:

a = pB − pA

b = pC − pB

c = pD − pC

The normals of the planes de�ned by ABC and BCD are then given by the cross-products
n1 = a× b and n2 = b× c or, as unit vectors, n1

|n1| = a×b
|a×b| and

n2

|n2| = b×c
|b×c| (where both are

perpendicular to b). According to the intended de�nition of rotating the �rst plane into
the second (and thus the �rst normal into the second) by angle α it must hold

R(b, α)
n1

|n1|
=

n2

|n2|

R(b, α)
a× b
|a× b|

=
b× c
|b× c|

where R(b, α) denotes the matrix that de�nes the rotation by angle α perpendicular to the
(directed) normal b.

The absolute value can be obtained using the normalized dot-product by the following
formula

cos(α) =
n1 · n2

|n1| · |n2|

|α| = arccos

(
n1 · n2

|n1| · |n2|

)
The torsion angle is also related to the argument θ (also called phase) of a complex number
z = x + iy = |z|eiθ. It is the polar angle of the complex coordinates (x, y) and can be
computed from the following equation

arg(x+ iy) = arctan∗
(y
x

)
where arctan∗(z) ∈ [−π, π] takes into consideration which quadrant z is lying in.

Now we can derive the formula for computing the torsion angle from the four atom
positions:

α = arg(−a · c+ (a · b)(b · c), a · (b× c))
An (ideal) angle of 180◦ is in chemistry called a trans conformation, where 0◦ is called

cis .

4.5.3 Angle Distributions

We provide now a short visual characterization of the distributions for several (real and
virtual) bond and torsion angles. These are, to the best of our knowledge, the �rst large-
scale and high-resolution histogram plots of the entire PDB. They might be of a more

4.5. STRUCTURE AND FEATURE REPRESENTATIONS 57

general interest to the structural genomics and proteomics community. The plots are in
good agreement with the plots published so far (see, for instance, [Lev76, OH94, HSV97,
Kle97, LDA+03, SMB04, LC05, AWCJ05]). Much more insight could be given by plots
that separate special residues like glycine or proline, or by plots showing histogram data
for only one type of residue. (Since this is not the main matter of this work, we omit these
�gures.)

Figures 4.4 and 4.5 show histograms of the ψ and ϕ backbone torsion angles. While the
�rst �gure shows the relation between the angles having an equal index according to the
numbering scheme of Figure 2.8(a) (both axes of rotation belong to the same amino acid
part), the other �gure shows the relation according to Figure 2.8(b) (both axes of rotation
belong to the same Cα atom), which is analogous to the original Ramachandran plot
[RRS63].

58 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

-180
-135

-90
-45

 0
 45

 90
 135

 180
ϕ i -180

-135
-90

-45
 0

 45
 90

 135
 180

ψi

(a) 3D-histogram

ϕ i

ψ
i

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

(b) Histogram map

-180
-135

-90
-45

 0
 45

 90
 135

 180
ϕ i -180

-135
-90

-45
 0

 45
 90

 135
 180

ψi

(c) Bounded 3D-histogram

ϕ i

ψ
i

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

(d) Contour plot

Figure 4.4: Torsion angle histogram of the PDB (ϕi vs. ψi). The major peak represents
the α-helix, the minor peaks come from the β-strands/sheets and the left-handed helix.

4.5. STRUCTURE AND FEATURE REPRESENTATIONS 59

-180
-135

-90
-45

 0
 45

 90
 135

 180
ϕ i -180

-135
-90

-45
 0

 45
 90

 135
 180

ψi+1

(a) 3D-histogram

ϕ i

ψ
i+

1

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

(b) Histogram map

-180
-135

-90
-45

 0
 45

 90
 135

 180
ϕ i -180

-135
-90

-45
 0

 45
 90

 135
 180

ψi+1

(c) Bounded 3D-histogram

ϕ i

ψ
i+

1

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

(d) Contour plot

Figure 4.5: Ramachandran-like angle histogram of the PDB (ϕi vs. ψi+1)

60 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Virtual bond angle τ

(a) Histogram of the virtual bond angle τi = ^(Cα
i , C

α
i+1, C

α
i+2)

 0

 50000

 100000

 150000

 200000

 250000

 300000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Virtual bond torsion angle α

(b) Histogram of the virtual torsion angle αi = � (Cα
i , C

α
i+1, C

α
i+2, C

α
i+3)

Figure 4.6: Histograms of the virtual Cα-bond and torsion angles of the PDB.

4.5. STRUCTURE AND FEATURE REPRESENTATIONS 61

-180
-135

-90
-45

 0
 45

 90
 135

 180
α i 0

 30
 60

 90
 120

 150
 180

τ i

(a) Surface histogram of (τi, αi)

α i

τ i

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

 0

 30

 60

 90

 120

 150

 180

(b) Color plot histogram of (τi, αi)

Figure 4.7: Histogram of the virtual bond angles (τi, αi) in the PDB using a logarithmic
color scheme.

62 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

-180
-135

-90
-45

 0
 45

 90
 135

 180
α i 0

 30
 60

 90
 120

 150
 180

τ i

(a) Bounded surface histogram of (τi, αi)

α i

τ i

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

 0

 30

 60

 90

 120

 150

 180

(b) Contour plot of (τi, αi)

Figure 4.8: Histogram of the virtual bond angles (τi, αi) in the PDB using a logarithmic
color scheme (continued).

4.5. STRUCTURE AND FEATURE REPRESENTATIONS 63

-180
-135

-90
-45

 0
 45

 90
 135

 180
α i 0

 30
 60

 90
 120

 150
 180

τ i+1

(a) Surface histogram of (τi+1, αi)

α i

τ i+
1

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

 0

 30

 60

 90

 120

 150

 180

(b) Color plot histogram of (τi+1, αi)

Figure 4.9: Histogram of the virtual bond angles (τi+1, αi) in the PDB.

64 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

-180
-135

-90
-45

 0
 45

 90
 135

 180
α i 0

 30
 60

 90
 120

 150
 180

τ i+1

(a) Bounded surface histogram of (τi+1, αi)

α i

τ i+
1

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

 0

 30

 60

 90

 120

 150

 180

(b) Contour plot of (τi+1, αi)

Figure 4.10: Histogram of the virtual bond angles (τi+1, αi) in the PDB.

4.5. STRUCTURE AND FEATURE REPRESENTATIONS 65

 0

 50000

 100000

 150000

 200000

 250000

 300000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

OCCO virtual bond torsion angle

Figure 4.11: Histogram of the OCCO virtual torsion angles in the PDB.

66 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle α

(a) Histogram of torsion angle α

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle β

(b) Histogram of torsion angle β

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle γ

(c) Histogram of torsion angle γ

 0

 5000

 10000

 15000

 20000

 25000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle δ

(d) Histogram of torsion angle δ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle ε

(e) Histogram of torsion angle ε

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle ζ

(f) Histogram of torsion angle ζ

Figure 4.12: Histogram of the backbone torsion angles α, β, γ, δ, ε, and ζ of the nucleic
acids contained in the PDB.

4.6. MEASURES OF PROTEIN SIMILARITY 67

4.6 Measures of Protein Similarity

We will now brie�y discuss the di�erent measures that can be used to describe the similarity
of macromolecular biopolymers in general, and in particular of proteins. We usually de�ne
the overall distance of two abstract structures (sequences of characters or numbers) in
terms of the distances of their constituting elements and operations such as comparisons,
substitutions, insertions, and/or deletions. Most of the times, we assume the distance
function d(x, y) (of sequences or their building blocks) to ful�ll the properties of a metric,
that is, for all assignments to the variables x and y the distance function

• gives a nonnegative value d(x, y) ≥ 0,

• is symmetric d(x, y) = d(y, x),

• obeys the triangle inequality d(x, y) + d(y, z) ≥ d(x, z),

• gives distance zero for identical arguments d(x, x) = 0,

• as well as distance zero implies arguments identity (d(x, y) = 0)⇒ (x = y).

Sometimes the last condition is dropped. In this case, d(x, y) is called a pseudometric.
Please note, that each of the distance functions can be associated with a corresponding

similarity function. Thus, distance and similarity can usually be regarded as complemen-
tary concepts.

4.6.1 String-Based Similarity Measures

The most widely used similarity measures for biological macromolecules (proteins and
nucleic acids) are based on the sequence of their constituting monomers. For two such
sequences s and t that are equal in size, the Hamming distance [Ham50] counts the number
of mismatch positions i: si 6= ti.

The edit distance, also called Levenshtein distance [Lev65], allows insertions and dele-
tions. Hence this measure can be used for calculating the similarity of sequences having
di�erent lengths.

4.6.2 Distance-Based Similarity Measures

Root-Mean-Square Distance

The root-mean-square distance (RMSD) of atom positions is by far the most popular
(dis)similarity measure for comparing protein structures. It requires a superposition of both
structures in the same coordinate system. If the comparison candidates are equal in length
and sequence the distance for a certain superposition can be evaluated straightforward in

68 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

the following way:

RMSD(A,B) =

√√√√ 1

n

n∑
i=1

d(ai, bi)2

=

√√√√ 1

n

n∑
i=1

(bi,x − ai,x)2 + (bi,y − ai,y)2 + (bi,z − ai,z)2

where A = (a1, . . . , an) and B = (b1, . . . , bn) are the sequences of corresponding (three-
dimensional) atom positions ai and bi, respectively, and n is the number of atoms of each
sequence.

An optimal superposition of the two structures is now de�ned as any superimposition
of A and B with minimum root-mean-square distance. The optimal root-mean square
distance RMSD∗ is consequently de�ned as

RMSD∗(A,B) = min
R,t

RMSD(A,R(B − t))2

= min
R,t

√√√√ n∑
i=1

d(ai, R(bi − t))2

where R ∈ R3×3 is a rotation matrix and t ∈ R3 is a three-dimensional translational
displacement vector.

This optimum three-dimensional alignment is always a superimposition where the center
of gravity for the �rst structure coincides with the center of gravity for the second structure.
This can be proven as follows:

Ignoring the square root and the constant factor do not change the minimum, thus we

4.6. MEASURES OF PROTEIN SIMILARITY 69

must minimize the term

n ·RMSD∗(A,B)2 = min
R,t

RMSD(A,R(B − t))2

=
n∑

i=1

d(ai, R(bi − t))2

=
n∑

i=1

(ai −R(bi − t))T (ai −R(bi − t))

Without changing the value, the identity matrix I is introduced

=
n∑

i=1

(ai −R(bi − t))T I(ai −R(bi − t))

For rotation matrices, the inversion is equal to the transposition: R−1 = RT or RRt = I

=
n∑

i=1

(ai −R(bi − t))T (RRT)(ai −R(bi − t))

Since matrix multiplication is associative

=
n∑

i=1

((ai −R(bi − t))TR)(RT (ai −R(bi − t)))

By (AB)T = BTAT we get

=
n∑

i=1

(RTai − bi + t)T (RTai − bi + t)

=
n∑

i=1

(t− bi +RTai)
T (t− bi +RTai)

=
n∑

i=1

(t− (bi −RTai))
T (t− (bi −RTai))

=
n∑

i=1

‖t− (bi −RTai)‖2

Now consider a �xed rotation matrix R, and optimize the translation vector t, i.e. we want
to know (setting ci = bi −RTai)

min
t∈R3

n∑
i=1

‖t− ci‖2

= min
t∈R3

n∑
i=1

√
(tx − ci,x)2 + (ty − ci,y)2 + (tz − ci,z)2

2

= min
t∈R3

n∑
i=1

[
(tx − ci,x)2 + (ty − ci,y)2 + (tz − ci,z)2

]
= min

t∈R3

[
n∑

i=1

(tx − ci,x)2 +
n∑

i=1

(ty − ci,y)2 +
n∑

i=1

(tz − ci,z)2

]

70 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Setting the �rst deviation to zero yields the translation values of the minimum:

tx =
1

n

n∑
i=1

ci,x ty =
1

n

n∑
i=1

ci,y tz =
1

n

n∑
i=1

ci,z

After superimposing the centroids of both structures, the optimum can be found by
systematically trying rotations about the three axes. Since rotations cause larger distances
for atoms distant from center, it could be useful to consider the atoms in order of decreasing
distance from the center.

If the structures di�er in their sequence of amino acids, it is not possible to �nd an
equivalent partner for each atom of the side chains. Therefore, it is reasonable to replace
each residue by a single virtual atom at the respective center of gravity or to consider only
the backbone atoms of both structures.

A major disadvantage of the RMSD measure appears in the case, where both sequences
contain a di�erent number of residues. Then, a mapping of equivalent atoms is needed.
Another proposition was provided by Carugo and Pongor [CP01], see also [CP02].

For the computation of optimal superpositions and the respective RMSD value, several
methods have been published.

Diamond [Dia66] described a procedure for �nding a suitable rotation to superpose
two structures, but it did not necessarily �nd the minimum.

McLachlan [McL72] presented an iterative solution where successively rotations are
applied. First, a steepest-descent method, according to Jacobi's diagonalization method
for real symmetric matrices, is applied. In a second phase, it is switched over to aNewton-
Raphson method. An analytic solution is presented too.

Kabsch [Kab76] proposed a direct solution using Lagrange multipliers. Sometimes the
method produced improper rotations, which was �xed in a later paper [Kab78].

Ferro and Hermans [FH77] described how the problem of approximating the axis-
rotation matrix can be solved iteratively without changing the coordinates. After extract-
ing the inherent information from the coordinates, the e�ort spent on the approximation
is the same for small and large vector sets.

Mackay [Mac84] proposed to use a unit quaternion instead of the 3 × 3 matrix for
representing the rotation. The advantage is that the resulting equations to be solved are
linear. A similar proposal had been made by Faugeras and Hebert at a conference in
1983.

Arun, Huang, and Blostein [AHB87] presented a noniterative algorithm that uti-
lizes the Singular Value Decomposition (SVD) of a 3× 3 matrix.

Extensive work on a unit quaternion-based and an orthonormal matrices-based solution
to the problem was written by Horn [Hor87a, Hor87b].

Diamond[Dia88] showed how the analysis of the problem can be simpli�ed by casting
the algebra in terms of only half the required angle of rotation. This led to an uncon-
strained eigenvalue/vector problem of order 4, or to scalar iteration using the inversion
of a third order matrix. A related method using quaternion algebra was published by
Kearsley [Kea89]. It requires only the diagonalization of a 4× 4 symmetric matrix and,

4.6. MEASURES OF PROTEIN SIMILARITY 71

unlike some of the other approaches, it always produces proper rotations, and no special
cases have to be considered.

Further work on the problem was published by Umeyama [Ume91], by Coutsias,
Seok, Dill [CSD04], by Theobald [The05], and others [Dia76, CL86, Brü03, JD05].

Other Distance-Based Measures

Other distance-based similarity measures are mostly based on intra-molecular distance ma-
trices, such as the root-mean-square deviation of the corresponding interatomic distances
(see Levitt [Lev76] and Sippl [Sip82]):

D(S, S) =
1

n

√∑
i,j

(di,j − di,j)2

Sippl also de�ned another measure, that is based on the entries of the k-th order side
diagonals of the intramolecular distance matrix:

Dk(S, S) =

√√√√ 1

n− k

N−k∑
i=1

(di,i+k − di,i+k)2

The dk values for small k, that is near the main diagonal, indicate (dis)similarity of the
local (secondary) structure, whereas the values for larger k refer to the similarity with
respect to the more global (tertiary) structure.

A representation based on distance vectors of neighboring Cα carbons was proposed
by Chew et al. [CHKK99]. Further methods related to structure similarity are discussed
in [CB99, BC01, LS04, Lot04, KL04, KP04].

4.6.3 Angle-Based Similarity Measures

Angle-based similarity measures are a straight forward approach, leading to slightly di�er-
ent concepts of similarity. While distance-based measures are mostly a kind of rigid-body
superposition, angle-based measures provide inherent �exibility with respect to torsion
around bonds. The answer to the question whether this is bene�cial depends on the par-
ticular comparison problem.

We investigated the relation between the RMSD of an optimal superimposition and the
value of di�erent torsion-angle based measures, that vary in the norm used to compute a
kind of 'average' angle deviation. In particular, these measures are:

1. the maximum angle deviation (∞-norm),

2. the root-mean-square deviation of angles (2-norm),

3. the average deviation of angles (1-norm), and

4. the 0.5-norm of the angle deviations.

72 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20

M
ax

im
um

 d
ev

ia
tio

n
of

 α
 a

ng
le

s

Cα RMSD

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
ax

im
um

 d
ev

ia
tio

n
of

 α
 a

ng
le

s

Cα RMSD

Figure 4.13: Comparison of the coordinates RMSD and the maximum angle deviation.

4.6. MEASURES OF PROTEIN SIMILARITY 73

Symbol Virtual Type Atoms
Polypeptides

ψi no torsion angle � (Ni, C
α
i , C

′
i, Ni+1)

ωi no torsion angle � (Cα
i , C

′
i, Ni+1, C

α
i+1)

ϕi no torsion angle � (C ′
i, Ni+1, C

α
i+1, C

′
i+1)

τi yes bond angle ^(Cα
i , C

α
i+1, C

α
i+2)

αi yes dihedral angle � (Cα
i , C

α
i+1, C

α
i+2, C

α
i+3)

yes dihedral angle � (Oi, C
′
i, C

′
i+1, Oi+1)

Nucleic acids
αi no torsion angles � (O3′i−1, Pi−1, O5′i, C5′i)
βi no torsion angles � (Pi−1, O5′i, C5′i, C4′i)
γi no torsion angles � (O5′i, C5′i, C4′i, C3′i)
δi no torsion angles � (C5′i, C4′i, C3′i, O3′i)
εi no torsion angles � (C4′i, C3′i, O3′i, Pi+1)
ζi no torsion angles � (C3′i, O3′i, Pi+1, O5′i+1)

Table 4.2: Di�erent types of variable angles. (Please note, we use the counting based
numbering scheme, see Figure 2.8).

We used an exemplary search of a structure that was described by its α-angles to examine
the relation to the RMSD measure. Figure 4.13 shows that there are hit candidate struc-
tures with quite acceptable Cα coordinate RMSD values (below 2.0) that exhibit extreme
maximum α angle deviations of approximately 160◦. But the picture changes dramatically
when we switch over from the maximum (∞-)norm to the 2-norm (RMSD, see Figure 4.14),
the 1-norm (average deviation, see Figure 4.15), or even the 1/2-norm (see Figure 4.16).

The root-mean-square deviation of ψ- and ϕ-angles had been used to compare protein
structures by Remington and Matthews [RM80] and by Karpen et al. [KdHN89].
Other methods also used dihedral angles for structure comparison, for instance the work
of Levitt [Lev76], Levine et al. [LSW84], and others [DFJZK94].

4.6.4 The Arithmetic String Distance

While string-based similarity measures like Hamming distance, Levenshtein distance,
and weighted edit distance gained a lot of attention in the subject of pattern matching
(in particular for nucleic and amino acid sequence comparison), the focus of structure
comparison has always been on the distance-based measures.

In this work, we try to integrate both views by abstracting from an exact measurement
to be encoded (for instance, an angle or a distance). To each measurement, we assign
a certain category by discretizing the original continuous space. At the same time, we
specialize the weighted edit distance to a distance function which has a certain arithmetic
or geometric interpretation. The result is a compact code with an associated distance
function that parallels the distance in the original metric of the continuous space. The

74 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20

R
oo

t-
m

ea
n-

sq
ua

re
d

de
vi

at
io

n
of

 α
 a

ng
le

s

Cα RMSD

 0

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
oo

t-
m

ea
n-

sq
ua

re
d

de
vi

at
io

n
of

 α
 a

ng
le

s

Cα RMSD

Figure 4.14: Comparison of the coordinates RMSD and the angles RMSD.

4.6. MEASURES OF PROTEIN SIMILARITY 75

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20

A
ve

ra
ge

 d
ev

ia
tio

n
of

 α
 a

ng
le

s

Cα RMSD

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 d
ev

ia
tio

n
of

 α
 a

ng
le

s

Cα RMSD

Figure 4.15: Comparison of the coordinates RMSD and the average angle deviation.

76 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20

(1
/2

)-
no

rm
 o

f α
 a

ng
le

s
de

vi
at

io
ns

Cα RMSD

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.5 1 1.5 2 2.5 3 3.5 4

(1
/2

)-
no

rm
 o

f α
 a

ng
le

s
de

vi
at

io
ns

Cα RMSD

Figure 4.16: Comparison of the coordinates RMSD and the 1/2-norm angle deviation.

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 77

distance values are not as accurate as the original ones, but the discrete state allows
a compact representation of common parts that are shared by several sequences. This
enables the application of pattern matching algorithms, which were originally designed for
alphabets of a more categorical nature.

4.7 Structure Searching via Encoded Backbones

We now turn to the application of generalized su�x trees to structure searching. First
of all, we describe the creation of a suitable structure representation. Afterwards, we
describe the concrete application to the PDB. We brie�y describe the resulting indexing
structure, and how exact searching can be performed using this data structure. Then we
discuss the computation of longest matching substructures, and proceed with a description
of deviation-tolerant searching. We conclude the section with a method for searching with
insertions and deletions.

4.7.1 Less (Information) is More: The Structure Alphabet

Since the central idea of this thesis is to apply string indexing and pattern matching
methods to searching structures and substructures, we need to �nd representations that
encode structure in terms of an alphabet. This could easily be achieved by just taking the
internal computer representation of the respective measure, e.g. the C++ or Java binary
code for the float or double value of the actual measure. This provides already the basic
precondition of discretizing the continuous measure space, yet the size of the alphabet (and
thus the memory consumption) is very large. Moreover, there is surely doubt, whether
two very close values should really be encoded by di�erent characters. Consequently, we
propose to partition the continuous measure space into several bins each of which a distinct
character of the alphabet is assigned to. Please note, that this bin-based approach was
already introduced by Hoffman [Hof96]. They used a restricted variant with equal-sized
sectors of certain torsion angles for accelerating protein structure comparisons. We extend
this approach to searching in structure databases (and thus parallel comparison) using
arbitrary translation- and rotation-invariant measures with intervals of arbitrary size.

The possible measures include simple distances, bond angles, and dihedral angles. To
simplify matters, we exploit the fact that the overall structure of the molecule is dominated
by the conformation of the backbone. Thus, its atomic distances and angles make up the
basis for the structural alphabet. A rather obvious representation of the backbone struc-
ture is the sequence of the torsion angles ψ, ω, and ϕ (see description in Section 2.2.3). As
already mentioned in the introductory chapter, the angle that corresponds to the torsion
around the peptide bonds adapts mostly the ideal trans-con�guration (corresponding to
±180◦). In rare cases, the cis-con�guration (0◦) occurs, see Figure 4.17, but the intervals
[−150,−10] and [10, 150] are almost empty. This means the peptide bond torsion does
not contribute much to distinguishing backbone structures since the average information
content (the entropy) is very low. To save time and space, the resulting structure descrip-

78 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle ω

 0

 5000

 10000

 15000

 20000

 25000

 30000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle ω

Figure 4.17: Histogram of the torsion around the peptide bond (ω).

Polypeptides Nucleic Acids
Positive PDB entries (�les) 32.799 2.907

Files containing several MODELs 3.694 490
Positive chains 165.167 15.845

Computation time 55 min 16 min

Table 4.3: Statistical data of the angles extraction process for the PDB.

tion should contain only the values of the other backbone torsion angles ψ and ϕ. The
respective histograms of the PDB are depicted in Figure 4.18.

A more condensed description of the backbone structure can be obtained by an ab-
straction that ignores the existence of the N and C ′ atoms. Indeed, there is no need to
consider the exact position of these atoms, since the side chains (which de�ne the chem-
ical properties at a certain position) are tied to the Cα atoms. Two 'neighboring' atoms
Cα,i and Cα,i+1 are considered as being connected by a virtual bond . In consequence of
that, a backbone structure can be described by the dihedral angles de�ned by four quasi-
consecutive Cα atoms (the virtual bond torsion angles) together with the angles de�ned by
three (quasi-)consecutive Cα atoms.

For discretizing τ see [dlCML97].
The whole circle from either 0◦ to 360◦, or −180◦ to +180◦ can be divided into segments

(not necessarily of the same size). Each sector is then encoded by a di�erent character.
This discretization of the angle space leads to a reasonable abstraction for the purpose of
comparing or searching structures.

4.7.2 Construction of the Polypeptide Angles Su�x Tree

After all, we are now prepared to describe how an index of the protein structures in the
PDB can be built. First of all, we loaded the current version of the 'database', that is
all PDB-format text �les, which are located at the ftp server of the RCSB. At the end

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 79

 0

 50000

 100000

 150000

 200000

 250000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle ψ

(a) Histogram of the backbone torsion angle ψi =� (Ni, C
α
i , C

′
i, Ni+1).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
ng

le
s

pe
r

in
te

rv
al

Backbone torsion angle ϕ

(b) Histogram of the backbone torsion angle ϕi =� (C ′
i, Ni+1, C

α
i+1, C

′
i+1).

Figure 4.18: Histograms of the backbone torsion angles ψ and ϕ.

80 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

of 2005, these �les had a total size of 5.3 gigabytes(!), in packed form, of course. After
roughly three quarters of an hour for the decompression, the total consumption of disk
space of the unpacked �les was 22GB. After that, we parsed all �les, computed the
di�erent types of angles (ψ, ϕ, α, etc.) and stored the angle sequences in separate �les.
This took another hour on our (comparatively old-fashioned) computer having a clock rate
of 1GHz. Fortunately, these steps have to be done only once per PDB �le. Some context
information like Cα carbon positions and amino acid sequences were extracted too. Of
course, the same procedure applies to the nucleic acid structures and sequences. Some
statistical data on the property extraction process is shown in Table 4.3.

Having the di�erent sequences of angles at hand, we can now build a structure index
by deciding

• which type of angles to use as a representation of the structure,

• which kind of entries to use for the index: all models, only one arbitrary model (e.g.,
the �rst), or the average structure of all models,

• which discretization scheme to use, that is

� whether an equidistant discretization should be used or not,

� which accuracy to use, that is, how many intervals or symbols the alphabet
should comprise, and, consequently, how large the di�erent intervals should be,

� whether di�erent alphabets should be used for encoding di�erent kinds of angles
(e.g., characters a to m for ψ, and characters n to z for ϕ).

Please, note that we use normal characters of the English alphabet for demonstration
purposes only; the implementation, of course, is not limited to this set of symbols, and it
usually starts with ASCII code 1, since code 0 is reserved for the sentinel.

After we made a decision, the respective angle sequences are successively retrieved
from the hard disk, and discretized according to the de�ned bins. Finally, the resulting
character sequences are inserted into a generalized su�x tree. Since we mostly use char-
acteristic angles of polypeptides to encode their structure, we refer to this kind of GST as
the Polypeptide Angles Su�x Tree (PAST). Building the PAST for all protein structures
contained in the PDB, takes (at present) between two and �ve minutes. The exact time
actually depends on the type of angle sequence and on the number of discretization inter-
vals. We do not show the graph of the construction time, since it does not matter whether
this can be done within 5 minutes, or 30 seconds. Again, we emphasize the main matter
of fast repeated searching, construction time does not matter within certain bounds.

4.7.3 Properties of the PAST

The size of the PAST (in terms of the number of nodes) as a function of the discretization
accuracy (number of intervals) is depicted in Figure 4.19. The graph exhibits some simi-
larity with the average size of a generalized su�x tree that is built from random sequences:

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 81

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 n

od
es

Alphabet size

Size of PAST using ψ/ϕ-angle sequences
Size of PAST using α-angle sequences

Figure 4.19: The size of the PAST (number of nodes) vs. the size of the alphabet.

it shows some signi�cant oscillations of decreasing frequency (for growing alphabet size).
Formulas of these oscillation parameters and the asymptotical average case behavior were
derived using Mellin transforms by Blumer et al. [BEH89].

For the case of several models of the same structure within a PDB entry, it is sometimes
most convenient, to include only a single structure, preferably some kind of average or me-
dian structure. We show how to compute average structures in Section 5.1.2. Figures 4.20
and 4.21 compare this setting to the case where all models are contained in the PAST.

4.7.4 Exact Searching

Having the PAST for all angle sequences of a certain type at hand, it is easy to search
for structure that are equal to a given reference structure. We just have to encode the
reference as we did for the PDB structures. Afterwards, we search character by character
using the standard su�x tree matching algorithm. At the end, we either have a complete
match, or the search gets stuck. In the �rst case, we have at least one matching structure.
The respective sequence and position can be found using the sequence identi�er and the
position �eld of the last inspected node. By traversing the whole subtree under the last
inspected node, we can �nd all substructures contained in the PDB, that are encoded by
the same sequence of characters, that is, whose angles fall into the same intervals. This
means, some deviation is allowed for the structures to be retrieved.

At �rst glance, this seems to be an appropriate and very easy solution to the problem.

82 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 200 400 600 800 1000

N
um

be
r

of
 le

av
es

Depth in the tree (in characters)

Number of distinct leaves
Number of distinct leaves

Number of all leaves
Number of all leaves

(a) The number of leaves for all models and for average structures only.

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

A
ve

ra
ge

 n
um

be
r

of
 c

hi
ld

re
n

Depth in the tree (in characters)

Branching to distinct children
Branching to distinct children

Branching to all children
Branching to all children

(b) The average number of children for all models and for average structures only.

Figure 4.20: Number of leaves and average branching degree of the PAST. This particular
instance was built using an alphabet of 36 characters representing α-angle intervals of 10◦.

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 83

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 200 400 600 800 1000

N
um

be
r

of
 le

av
es

Depth in the tree (in characters)

Number of all leaves
Number of distinct leaves (06 int.)
Number of distinct leaves (12 int.)
Number of distinct leaves (24 int.)
Number of distinct leaves (36 int.)
Number of distinct leaves (48 int.)

(a) The number of leaves for di�erent discretization intervals.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000

A
ve

ra
ge

 n
um

be
r

of
 c

hi
ld

re
n

Depth in the tree (in characters)

All children
Distinct children (06 int.)
Distinct children (12 int.)
Distinct children (24 int.)
Distinct children (36 int.)
Distinct children (48 int.)

(b) The average branching degree for di�erent discretization intervals.

Figure 4.21: Number of leaves and average branching degree for di�erent alphabet sizes
(using average structures for models of the same PDB entry). The alphabet (interval) sizes
are: 6(60◦), 12(30◦), 24(15◦), 36(10◦), 48(7.5◦).

84 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

As we will see, only the second predicate applies. We test the method by constructing the
PAST for protein α-angles, using 36 discretization intervals of 10◦. We take the search
pattern from PDB entry 1a1f, chain A, residues 137 to 157, or short 1a1f(A):137− 157.
We get the result immediately (after 0.0 seconds), but it is a bit depressing: we found only
two hits, and these represent exactly the entry where we took our search pattern from.
We got two hits at the same position, because this chain contains two alternate location
indicators at residue 123. Thus, we did not �nd anything new.

We don't give up and build the same PAST, but now using 24 greater intervals of 15◦.
This time, we are lucky, �nding an additional hit: 1a1k(A):137− 157.

We repeat the experiment with 12 intervals of size 30◦. Besides the two entries of 1a1f,
we �nd the following eight additional entries now: 1a1g(A), 1a1k(A), 1f2i(I), 1g2f(F),
1mey(C), 1mey(C), and 1llm(D) (two times).

If we reduce the discretization accuracy to 10 intervals of 36◦, a set of 29 substructures
is returned. Surprisingly, a further reduction to 8 intervals of 45◦reduces the size of the
result set signi�cantly. The complete results are shown in Table 4.4.

We �nd, that searching using the standard procedure is unsatisfactory. While at least
one of the settings (e.g., alphabet size 10, interval size 36◦, see Table 4.4) seems to produce
acceptable results, even larger intervals may reduce the result set dramatically. We observe,
that presence of a substructure in the result set for a certain discretization does not imply
appearance of this hit in a result set for lower accuracy. Thus, the results to be expected are
quite unpredictable, because a near-optimal discretization scheme cannot be determined
in advance of the search. Also, the query de�nition is very restricted, since there is the
same admissible interval size for each of the angle positions. A very unfortunate situation
occurs if a search angle is near the boundary of its encoding interval; then the accepted
variance is much greater in one direction compared to the other. What is left, is a very
short response time. In any case, we could not measure any delay (0.0 seconds) of the
answer. This is, of course, due to the linear worst-case time complexity (see Chapter 3).

4.7.5 Finding the Longest Common Substructure

The exact searching approach has one major advantage: For a given query structure p,
the longest substructure, that is contained in the database, can be found very fast. The
principle is almost as simple as exact searching itself. From the root node, we search for
all su�xes of the query sequence using the standard matching procedure, starting with the
complete string. If the search becomes stuck, we remember how many characters matched,
and we search for the next su�x. We can save some e�ort if we do not start the search at
the root again. Instead, we use the su�x link of the last matching (explicit) node. This
pointer leads us to another explicit node that exactly matches the next su�x to the same
position. If the mismatch occurred at an implicit node, only the �rst character of the edge
has to be used for �nding the correct child after traversing the su�x link. The search is
continued with the character that produced the mismatch. We always keep track of the
maximum length match. The traversal can be stopped, if the current su�x is shorter than
the actual maximum.

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 85

Entry Ch Position Md Alt Sequence 36 24 12 10 8
1a1f A 137- 157 1 A CRICMRNFSRSDHLTTHIRTH X X X X X
1a1f A 137- 157 1 B CRICMRNFSRSDHLTTHIRTH X X X X X
1a1g A 137- 157 1 CRICMRNFSRSDHLTTHIRTH X X
1a1h A 137- 157 1 A CRICMRNFSRSDHLTTHIRTH X X
1a1h A 137- 157 1 B CRICMRNFSRSDHLTTHIRTH X X
1a1i A 137- 157 1 A CRICMRNFSRSDHLTTHIRTH X
1a1i A 137- 157 1 B CRICMRNFSRSDHLTTHIRTH X
1a1j A 137- 157 1 A CRICMRNFSRSDHLTTHIRTH X
1a1j A 137- 157 1 B CRICMRNFSRSDHLTTHIRTH X
1a1k A 137- 157 1 CRICMRNFSRSDHLTTHIRTH X X X X
1a1l A 137- 157 1 A CRICMRNFSRSDHLTTHIRTH X X
1a1l A 137- 157 1 B CRICMRNFSRSDHLTTHIRTH X X
1aay A 137- 157 1 A CRICMRNFSRSDHLTTHIRTH X
1aay A 137- 157 1 B CRICMRNFSRSDHLTTHIRTH X
1aay A 165- 185 1 A CDICGRKFARSDERKRHTKIH X
1aay A 165- 185 1 B CDICGRKFARSDERKRHTKIH X
1f2i G 1137-1157 1 CRICMRNFSRSDHLTTHIRTH X
1f2i I 3137-3157 1 CRICMRNFSRSDHLTTHIRTH X
1g2d C 137- 157 1 CRICMRNFSQHTGLNQHIRTH X
1g2d C 165- 185 1 CDICGRKFATLHTRDRHTKIH X
1g2d F 237- 257 1 CRICMRNFSQHTGLNQHIRTH X
1g2d F 265- 285 1 CDICGRKFATLHTRDRHTKIH X
1g2f C 165- 185 1 CDICGRKFATLHTRTRHTKIH X
1g2f F 237- 257 1 CRICMRNFSQQASLNAHIRTH X
1g2f F 265- 285 1 CDICGRKFATLHTRTRHTKIH X
1jk1 A 137- 157 1 CRICMRNFSRSDHLTTHIRTH X
1llm D 206- 226 1 A CRICMRNFSRSDHLTTHIRTH X X X
1llm D 206- 226 1 B CRICMRNFSRSDHLTTHIRTH X X X
1mey C 35- 55 1 CPECGKSFSQSSDLQKHQRTH X
1mey C 63- 83 1 CPECGKSFSRSDHLSRHQRTH X
1p47 A 137- 157 1 CRICMRNFSRSDHLTTHIRTH X
1p47 B 137- 157 1 CRICMRNFSRSDHLTTHIRTH X
1x6h A 50- 70 7 CSKCGKTFTRRNTMARHADNC X
1zaa C 37- 57 1 CRICMRNFSRSDHLTTHIRTH X
1zaa C 65- 85 1 CDICGRKFARSDERKRHTKIH X

Table 4.4: Search test for the exact search.

86 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

As for the exact search, the worst-case time complexity of this operation is a linear
function of the pattern length. This is due to the fact, that we have to follow at most m =
|p| matching (downward) edges, and the number of su�x link transitions is bounded by m
too (there are only m su�xes). The number of matched characters is bounded by m,
since we match each character only once. The number of mismatches is bounded by the
number of traversed su�x links (at most m), and the number of child lookups (which is
O(|Σ|) = O(1) for a constant alphabet) is bounded by the total number of inspected nodes
(at most 2m). Ultimately, the overall worst-case complexity is O(m).

4.7.6 Tolerant Searching

In Section 4.7.4, we learned that searching using the standard matching procedure of su�x
trees does only perform well regarding the response time, but not with respect to the quality
of the results. Now, we describe how to improve the sensitivity of the search process while
the query time is only slightly increased.

The main problem of exact searching is the fact that some of the query angles fall near
the discretization bound of their respective interval. But, on average, we expect angles of
related structures to spread to both sides of the query angles. If the related angle of a
potential hit is on the wrong side, already a small deviation is su�cient to move it into the
next discretization interval, while the di�erence of a whole interval size is needed to put it
into the neighboring interval on the other side of the query angle. Hence, we are facing a
complete lack of symmetry for the search tolerance, at least for extreme cases. Note that,
already one mismatch discards a related structure. So we might lose a lot of potential hits.

To bring the search angles more to the center of the query range, we allow the potential
hits to be in one of the two neighboring intervals. Thus, we have a �xed guarantee for
the admissible deviation of the size of one interval. In extreme cases, the query angle falls
again near one of the discretization boundaries of its interval. But now, the angle of a
possibly related structure is allowed to di�er by the size of one interval on the one hand
side, and by two intervals on the other side. Yet, there is left a bit of asymmetry, but
it seems to be better than in the exact case. The asymmetry can be further reduced by
allowing more neighboring intervals for potential hits. While the ratio of the allowed left
and right deviation is at least 1:2 for a tolerance of one neighboring interval, the ratio
bound changes to 2:3 for two, and to 3:4 for three neighbor intervals, and so on. This way,
the necessary symmetry can be adjusted. In the asymptotic case of an in�nite number of
discretization intervals this approach leads to a perfect symmetry of the search range with
regard to the query angles.

While the deviation problem is solved this way, another problem has been introduced
at the same time. Instead of traversing just one path down the tree, the search procedure
must follow the path to more than just one child, if they �t the tolerance criterion. This
alters the worst-case time complexity into an exponential function of the pattern length, it
is now O(|Σ||p|) = O(|Σ|m). Although this is a much worse result, again, the (worst-case)
query time does not depend on the size of the database. And, as we will see, the usual
query time is not that bad. It was shown by Maaÿ [Maa04] that, for a su�x trie built

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 87

Algorithm 6: GenSu�xTree::approxSearch(w, curpos)

Impl. Arg.: string& p // reference of the pattern

int pSize // the size of the pattern

vector<int>& srange // reference of the search ranges

vector<string>& strings // access to all strings of the GST

Expl. Arg.: w // the current node of the GST

curpos // the current position in the pattern

Result: calls showLeaves() each time the pattern was found

if curpos < pSize then
nxt ←− p[curpos] ; // pattern character at the current position

// Compute the bounds of the accepted range

�rstCh ←− ((nxt−1− srange[curpos] + alphabetSize) % alphabetSize) +1
lastCh ←− ((nxt−1+ srange[curpos]) % alphabetSize) +1
if 2*srange[curpos]+1 ≥ alphabetSize then // full range

�rstCh ←− 1
lastCh ←− alphabetSize

notSplit ←− (�rstCh ≤ lastCh)
child ←− (w→children); // child iterator

if notSplit then
while child 6= ⊥ and �rstCh > strings[child→stridx][child→start] do

child ←− (child→next)

while child 6= ⊥ do
if notSplit and lastCh < strings[child→stridx][child→start] then

return
if notSplit or isApproxEqual(nxt, strings[child→stridx][child→start],

srange[curpos]) then
v ←− child
last ←− curpos + v→end − v→start +1
if last > pSize then

last ←− pSize
found ←− true
for (int i←−curpos; i<last; i++) do

if not isApproxEqual(p[i], strings[v→stridx][v→start+i-curpos],
srange[i]) then

found ←− false
break

if found then
if last < pSize then

approxSearch (v, last)
else

showLeaves (v, curpos, pSize)

child ←− (child→next)

88 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

from random angles with a uniform and memoryless distribution, the asymptotic running
time would be O(|S|log|Σ|(2t+1)), where |S| is the number of sequences, t denotes the search
tolerance, and 2t+1 is the total number of allowed intervals for each angle of the sequence.
We do not claim these conditions to be true. At least, this seems to be a rough estimate
for the average run time of the procedure, that is con�rmed by our experiments.

4.7.7 Searching with Insertions and Deletions

A problem, that sometimes occurs in searches using the previously described tolerant search
method, is that some related structures of the database match the pattern only in non-
consecutive parts. This means, larger parts of acceptable similarity are interrupted by
substructures, that do not match with respect to their shape (angles), or that represent an
insertion or a deletion compared to the query structure. In this case, the search process
has to be split into two phases: �rst, the search for the contiguous matching substructures
(called fragments), and second, the combination of these substructures to the �nal result
structures (hits). A fragment is a continuous stretch of the sequence occurring in the query
and in the database (subject to a given tolerance). We consider maximal fragments, that is,
approximate occurrences of the query pattern that cannot be extended without violating
one of the fragment requirements.

To de�ne the properties of the expected results, the user has to provide a number of
parameters, that describe the accepted kind of results:

• a lower bound for the size of the fragments (minimum fragment size),

• the maximum per-position deviation (search tolerance, acceptable interval neighbor-
hood), and

• the admissible average deviation of a fragment (average search tolerance), expressed
as a fraction of the maximum per-position deviation.

The minimum fragment size avoids splitting potential matches into very small pieces. The
search tolerance serves the same purpose as in the normal tolerant search, it bounds the
local deviation of the measure at each single position. The average search tolerance bounds
the sum of the deviations. This measure can be given as an absolute value, but usually
it is more convenient to give it as a fraction of the position-based tolerance. In this form,
the value is independent of the length of the query. Both parameters together allow larger
local deviations if the overall �t of the structures is better on average.

At �rst, we are looking for all substructures in the database (or, more precisely in the
GST), that match a su�x of the query structure having at least the minimum length.
The attempt to apply the same method as in the case of the longest common (exact)
substructure, that is, to traverse the su�xes by following the path along the su�x links
of the last matching node, is not applicable (since we apply tolerant matching). After
traversing a su�x link, possible matches with slight deviations, that reside in subtrees
which are not ancestors of the current node, would be lost. Hence, the algorithm searches

4.7. STRUCTURE SEARCHING VIA ENCODED BACKBONES 89

each appropriate su�x by a tolerant search from the root node, and keeps track of all
fragments having a length of at least the minimum fragment size. Together with the
fragments, their current total sum of deviations is stored.

While Römers [Röm04] proposed a method that stores and updates the found frag-
ments after each edge transition (of course, only if they ful�lled the length and deviation
requirements), we propose to use a parameter that indicates one of the following three
states during the traversal of the tree:

1. The minimum fragment size has not been reached yet.

2. The minimum fragment size has been reached and the edge label of the current path
from the root is within the (per-character) tolerance requirements.

3. The minimum fragment size has been reached, but the edge label of the current path
from the root violates the tolerance requirements.

Another parameter should provide the current length of the longest path (from the root)
ful�lling the average tolerance criterion.

During the traversal of the PAST, we always know from the new parameters about two
conditions:

1. whether the minimum fragment size was reached already, and

2. whether the current path from the root is within the per-character tolerance, or not.

If the �rst of these two conditions is false, we only follow the branches that meet the local
tolerance condition. Traversal of all other branches is canceled. If we �nd only characters
within the tolerance, we continue matching and updating the minimum size �ag.

If the �rst condition is true, that is, we found an acceptable fragment earlier, we must
continue the traversal anyway to store the occurrences represented by the leaves. But, in
case of mismatching characters (out of tolerance bounds), we must remember that further
extension of the hit is forbidden. In the case of acceptable characters, we must update the
parameter for the longest acceptable string if the average tolerance condition is met. In
both cases, we store the found fragment if we are visiting a leaf node.

In contrast to the approach of Römers, this method allows to store each fragment
only once (at the respective leaf), and it avoids the cumbersome update procedure. The
advancement is greatly appreciated, since the largest part of the runtime for searching with
insertions and deletions is due to the fragment �nding process (see [Röm04]).

The result of the traversal is a set of fragments of di�erent lengths, ful�lling the length
and tolerance requirements. For the combination of the found fragments we refer to the
work of Römers [Röm04]. The given method is very fast in practice.

Another approach would be to use dynamic programming. This method could also allow
the fragments to adopt a di�erent order compared to the query, which is a phenomenon that
frequently occurs in the context of genomes and proteomes. With regard to multi-domain
proteins for instance, the actual sequence order of the domains is often not essential to the
function of the protein. The important requirement is that the fragments of one structure
cover the functional parts of the other structure.

90 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

4.8 Applications

4.8.1 Zinc Fingers

One of the most abundant motifs of short length is the class of zinc �ngers. These sub-
structures consist of two antiparallel β-strands (a β-hairpin) followed by a loop and an
α-helix. The structure of the classic zinc �nger is usually stabilized by a zinc atom, which
is bound to two cysteine residues of the hairpin and to two histidine residues of the helix.
In absence of the zinc atom, the structure does not fold into the �nger form.

The classic zinc �nger is a tandem-repeated motif that recognizes and binds to DNA or
RNA sequences. Other variants of zinc �ngers bind to speci�c parts of DNA in monomeric
form, or in dimeric form to palindromic parts of nucleic acids. The speci�city of DNA-
binding changes for di�erent lengths and di�erent residues of the parts between the cysteine
and histidine residues.

Interestingly enough, it has been shown by Dahiyat and Mayo [DM97, DSM97], that
polypeptides can be designed synthetically, that adopt the zinc �nger structure without
the help of the zinc atom. They used a special algorithm that distinguishes the amino
acids according to their �tness for the core, the boundary, and the surface of the folded
protein. As a result, they obtained a polypeptide called FSD-1 (Full Sequence Design),
that did not contain any cysteine or histidine residue. Searching the amino acid sequence
of FSD-1 against protein sequence databases did not yield any signi�cant similarity to a
known protein.

After synthesizing the peptide, the structure was determined using NMR spectroscopy.
The more or less surprising result was a quite similar structure compared to the template
(Zif 268). The root-mean-square deviation of less than 2Å for the main chain atoms
con�rmed a good agreement with the target structure.

As a consequence, the PDB entry that holds the structure of FSD-1, is only reported
by structure-based searches. Any (amino acid) sequence-based method (e.g., patterns and
pro�les of the PROSITE database, see [BFM97, SCH+02]) must inherently fail to �nd
this entry. Thus, it is a great opportunity to prove the usefulness of our structure-based
approach.

CATH classi�es zinc �ngers within the �rst 4 levels as follows (see Section 5.2.2)
C Class: 3 Alpha Beta
A Architecture: 30 2-Layer Sandwich
T Topology: 160 Double Stranded RNA Binding Domain
H Homologous Superfamily: 60 Classic Zinc Finger

The further levels S (Sequence Family), N (Non-identical), I (Identical), D (Domain) are
listed in Table D.1.

4.8.2 Searching Zinc Fingers of the CCHC-Type

To demonstrate the capabilities of the PAST, we perform a �rst search for zinc �ngers of
the CCHC-type (because we want to have a survey result set for the �rst try). This type

4.8. APPLICATIONS 91

Occurrence Sequence Tol. αRMSD Cα RMSD

1mfs 13-29 VKCFNCGKEGHIAKNCR 0 0.0 0.00

1a1t A 13-29 VKCFNCGKEGHIAKNCR 2 5.9 0.42

A 34-50 KGCWKCGKEGHQMKDCT 3 12.3 0.87

1a6b B 24-40 DQCAYCKEKGHWAKDCP 3 16.5 1.22

1aaf 13-29 IKCFNCGKEGHIAKNCR 2 12.2 0.71

34-50 RGCWKCGKEGHQMKDCT 2 12.4 0.79

1bj6 A 13-29 VKCFNCGKEGHTARNCR 3 11.8 0.77

A 34-50 KGCWKCGKEGHQMKDCT 10 28.4 1.29

1cl4 A 51-67 GLCPRCKRGKHWANECK 14 56.0 1.95

1dsq A 29-45 PVCFSCGKTGHIKRDCK 4 13.0 0.72

1dsv A 56-72 GLCPRCKKGYHWKSECK 11 48.0 1.45

1esk A 13-29 VKCFNCGKEGHTARNCR 2 11.9 0.72

A 34-50 KGCWKCGKEGHQMKDCT 6 31.9 1.12

1f6u A 13-29 VKCFNCGKEGHIAKNCR 3 14.1 0.93

A 34-50 KGCWKCGKEGHQMKDCT 1 7.7 0.53

1hvn E 1-17 VKCFNCGKEGHIARNCR 3 17.5 1.22

1hvo E 1-17 VKCFNCGKEGHIARNCR 3 14.7 1.11

1mfs 13-29 VKCFNCGKEGHIAKNCR 0 0.0 0.00

34-50 KGCWKCGKEGHQMKDCT 1 6.8 0.63

1nc8 7-23 IRCWNCGKEGHSARQCR 4 15.0 0.91

1ncp C 22-38 KGCWKCGKEGHQMKDCT 10 30.9 1.42

N 1-17 VKCFNCGKEGHTARNCR 6 21.1 1.41

1u6p A 24-40 DQCAYCKEKGHWAKDCP 2 6.7 0.56

1wwd A 24-40 DQCAYCKEKGHWAKDCP 1 7.3 0.59

1wwe A 24-40 DQCAYCKEKGHWAKDCP 1 7.3 0.59

1wwf A 24-40 DQCAYCKEKGHWAKDCP 1 7.9 0.55

1wwg A 24-40 DQCAYCKEKGHWAKDCP 1 6.5 0.59

2znf 1-17 VKCFNCGKEGHIARNCR 3 19.5 1.15

Table 4.5: Hits from the search for zinc �ngers of the CCHC type.

92 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

of zinc �nger contains one histidine and three cysteine residues that bind to the zinc atom.
We built the PAST using α-angles with an alphabet size of 36 characters. Each angle

interval has size 10◦. After the PAST has been built, be performed several searches using
di�erent tolerance settings. We tried to �nd approximate matches of the CCHC-type zinc
�nger, which was taken from PDB entry 1mfs, residues 13�29. (In this case, there is only
one chain, which has no identi�er.)

The queries consumed only a few seconds. For the �rst tolerances, the elapsed time was
even below one second. The results are shown in Table 4.5. The �rst column contains the
PDB entry and the position of the hits. The second column shows the sequence fragment
that was found. The four major conserved residues are shaded. In the third column, we
show the tolerance setting, where the particular hit was found for the �rst time. The fourth
column contains the root-mean-square deviation for the original sequence of angles of the
search fragment and the angle sequence of the hit. In the last column, we show the RMSD
of an optimal superimposition of the Cα atoms.

4.8.3 Searching Classic Zinc Fingers

We will now look at a more extensive example, the search for classic zinc �ngers of the
C2H2-type. We perform queries that demonstrate, how the search time, the result set,
and other variables depend on the search tolerance and the discretization accuracy (size
of the alphabet / interval size). We further compare the result sets to the entries of the
PROSITE, SCOP, and CATH databases, as well as to searches that were performed using
the SPASM tool.

All tables show the search for a classic zinc �nger that we took from PDB �le 1a1j,
chain A, residues 137 to 157. Thus, every result set must contain this PDB entry (with
deviation zero for all measures).

4.8. APPLICATIONS 93

Tol. Accepted Time Nr. of Out of Distinct Distinct
interval [s] Results RMSD results PDB �les

0 10◦ 0.0 3 0 1 1
1 30◦ 0.0 57 0 31 16
2 50◦ 0.7 290 0 76 41
3 70◦ 4.5 749 1 99 57
4 90◦ 9.1 1098 15 124 75
5 110◦ 14.9 1431 199 174 95
6 130◦ 18.1 1589 395 216 111
7 150◦ 20.5 1692 906 258 126
8 170◦ 22.4 1766 1919 275 134
9 190◦ 26.8 1938 3482 333 169
10 210◦ 32.7 2146 5957 426 202
13 270◦ 58.2 2818 48251 848 440

Table 4.6: Query comparison: time and number of results for di�erent tolerances using
α-angles.

Search Time Comparison for Varying Tolerances

The running times of queries for di�erent tolerances are given in Table 4.6 (using α-angles),
Table 4.7 (using ψ/ϕ-angles) and Table 4.8 (using OCCO-angles). The tables show the
search tolerance in the left column, followed by the total accepted angle interval (two times
the tolerance plus one, multiplied with the size of one interval). The third column shows
the overall search time in seconds. The next two columns show the number of hits (within
the RMSD bound) and the number of rejected hit candidates (due to exceeding the RMSD
bound). Since we built the PAST using all MODEL entries of the PDB �les, the result set
is somewhat redundant. We remove this redundancy by counting in the sixth column only
one model for each distinct position in the PDB �le. For the last column, we count each
PDB �le only ones, hence giving the number of hit PDB �les.

The query times for all three angle types do not exceed one minute. While the times for
the ψ, ϕ- and OCCO-angles are below one second for the �rst �ve rows (tolerance values
0 to 4), the times for the α-based search jumps to 4.5 seconds at tolerance 3. This is
due to the fact, that this query already reports roughly 750 hits, whereas this number is
reached much later, at tolerance 7, by the other angle types. If we compare the runtimes
for equal sizes of the result set, they seem to be very similar, although the tolerances are
very di�erent.

In contrast to the α- and OCCO-angle queries, the searches that use the ψ/ϕ-angles
show a signi�cant saturation e�ect at the tolerances 6 to 10, where the number of re-
sults for all three measures (all models, model-reduced hits, and distinct �les) grows only
moderately. Also, the number of (spurious) hits, which are found to exceed the RMSD
bound, grows very slowly. Afterwards, this number increases by a large value, which means,

94 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Tol. Accepted Time Nr. of Out of Distinct Distinct
interval [s] Results RMSD results �les

0 10◦ 0.0 3 0 1 1
1 30◦ 0.0 12 0 6 6
2 50◦ 0.0 62 0 30 16
3 70◦ 0.2 87 0 43 21
4 90◦ 0.4 157 0 59 29
5 110◦ 1.6 380 0 81 43
6 130◦ 3.9 655 3 94 53
7 150◦ 5.0 749 16 98 54
8 170◦ 5.7 803 29 105 57
9 190◦ 6.3 844 31 106 58
10 210◦ 7.1 882 35 108 60
13 270◦ 12.7 1015 1886 140 86

Table 4.7: Query comparison: time and number of results for di�erent tolerances using
ψ/ϕ-angles.

Tol. Accepted Time Nr. of Out of Distinct Distinct
interval [s] Results RMSD results PDB �les

0 10◦ 0 3 0 1 1
1 30◦ 0 5 0 3 3
2 50◦ 0 32 1 15 13
3 70◦ 0,1 78 78 49 32
4 90◦ 0,4 189 131 89 50
5 110◦ 1,4 373 282 116 69
6 130◦ 3,1 579 711 152 91
7 150◦ 5,3 758 1527 175 103
8 170◦ 6,9 870 2521 199 117
9 190◦ 8,5 963 4154 215 124
10 210◦ 10,5 1066 6284 236 139
11 230◦ 13,4 1206 9877 280 165
12 250◦ 18,8 1428 19732 361 218
13 270◦ 31,5 1753 47641 491 313

Table 4.8: Query comparison: time and number of results for di�erent tolerances using
OCCO-angles.

4.8. APPLICATIONS 95

the tolerance is getting too large for a clear distinction between query-related and other
structures.

Query Results Comparison for Varying Tolerances

The coverage of the di�erent result sets (for varying tolerances) with respect to the entries
of the SCOP, CATH, and PROSITE databases is shown in the Tables 4.9, 4.15, and 4.16.
Please note: Since all three tables show rather similar results, we only present the table
for α-angles right here, the other two are deferred to the end of the chapter.

All three tables are divided into two subtables, the upper part showing statistics about
di�erent hit positions, the lower part showing statistics about di�erent hit PDB �les (usu-
ally, zinc �ngers occur more than once per protein).

The left column indicates the search tolerance. The second to fourth columns indicate
the percentage of found positions (upper subtable) and found �les (lower subtable) in the
PROSITE, CATH, and SCOP database. The latter one is represented by two columns,
the �rst of which refers to the SCOP family 'Classic zinc �nger, C2H2', and the second
refers to the whole superfamily 'C2H2 and C2HC zinc �ngers', which includes also the
C2HC-type of zinc �ngers. The last column shows the coverage according to the union of
all database entries. The numbers in parentheses within the subtable captions refer to the
number of relevant entries in the respective database.

The tables show a strong performance of the α-angles. They reach a coverage of more
than 90% for all categories using a search tolerance of 13 intervals. This measure should
be compared to the coverage that is reached by each single database. We emphasize that
these fractions of coverage should be interpreted with care, since the databases do not base
on identical sets of PDB �les. Thus, sometimes the report of a possible hit may depend
on whether the database is up-to-date or not.

96 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

PROSITE CATH SCOP-Fam SCOP-SF All
Tol. hits hits hits hits hits

(126) % (99) % (116) % (122) % (151) %
0 1 0,8 1 1,0 1 0,9 1 0,8 1 0,7
1 26 20,6 30 30,3 26 22,4 26 21,3 30 19,9
2 55 43,7 53 53,5 47 40,5 48 39,3 63 41,7
3 64 50,8 58 58,6 55 47,4 57 46,7 76 50,3
4 69 54,8 59 59,6 60 51,7 63 51,6 82 54,3
5 76 60,3 63 63,6 65 56,0 68 55,7 89 58,9
6 93 73,8 72 72,7 79 68,1 83 68,0 106 70,2
7 104 82,5 82 82,8 89 76,7 93 76,2 117 77,5
8 112 88,9 86 86,9 97 83,6 101 82,8 125 82,8
9 114 90,5 87 87,9 99 85,3 103 84,4 127 84,1
10 117 92,9 89 89,9 102 87,9 107 87,7 131 86,8
13 123 97,6 93 93,9 107 92,2 112 91,8 137 90,7

PROSITE CATH SCOP-Fam SCOP-SF All
Tol. �les �les �les �les �les

(48) % (31) % (43) % (49) % (63) %
0 1 2,1 1 3,2 1 2,3 1 2,0 1 1,6
1 14 29,2 15 48,4 14 32,6 14 28,6 15 23,8
2 27 56,3 21 67,7 25 58,1 26 53,1 31 49,2
3 34 70,8 23 74,2 31 72,1 33 67,3 41 65,1
4 36 75,0 23 74,2 33 76,7 36 73,5 44 69,8
5 40 83,3 24 77,4 36 83,7 39 79,6 48 76,2
6 44 91,7 25 80,6 39 90,7 43 87,8 52 82,5
7 45 93,8 25 80,6 40 93,0 44 89,8 53 84,1
8 46 95,8 25 80,6 41 95,3 45 91,8 54 85,7
9 46 95,8 25 80,6 41 95,3 45 91,8 54 85,7
10 47 97,9 26 83,9 42 97,7 47 95,9 56 88,9
13 48 100,0 26 83,9 42 97,7 47 95,9 57 90,5

Table 4.9: Coverage of PROSITE, CATH, and SCOP entries compared for di�erent tol-
erances using α-angles. SCOP-Fam represents the SCOP family, whereas SCOP-SF refers
to the superfamily.

4.8. APPLICATIONS 97

PROSITE CATH SCOP-Fam SCOP-SF All
Database hits hits hits hits hits

(126) % (99) % (116) % (122) % (151) %
PROSITE 126 100,0 85 85,9 106 91,4 108 88,5 126 83,4

CATH 85 67,5 99 100,0 76 65,5 76 62,3 99 65,6
SCOP 106 84,1 76 76,8 116 100,0 116 95,1 116 76,8

SCOP-SF 108 85,7 76 76,8 116 100,0 122 100,0 122 80,8

PROSITE CATH SCOP-Fam SCOP-SF All
Database �les �les �les �les �les

(48) % (31) % (43) % (49) % (63) %
PROSITE 48 100,0 23 74,2 38 88,4 40 81,6 49 77,8

CATH 23 47,9 31 100,0 24 55,8 24 49,0 32 50,8
SCOP 38 79,2 24 77,4 43 100,0 43 87,8 44 69,8

SCOP-SF 40 83,3 24 77,4 43 100,0 49 100,0 50 79,4

Table 4.10: Cross comparison of PROSITE, CATH, and SCOP.

Cross-comparison of the Databases

To get an impression of how the coverage of the three databases by the PAST searches
should be rated, we estimated the same performance measures for each single database.
As can be seen from Table 4.10, the respective measures are not signi�cantly di�erent from
the query results for the PAST queries.

Comparison to SPASM

For the purpose of performance evaluation, we also compared the search times and the
result sets of the PAST queries to the response times and search results of the SPASM
tool (see Table 4.11). We used the same set of PDB �les for both tools, though we should
note, that SPASM only recognizes the �rst chain of each �le. We used the same PDB entry
for searching: 1a1j(A):137− 157. SPASM o�ers several options for customizing the search
process. For the �rst three runs, we used all Cα carbons of the zinc �nger. Thus, the actual
residue type was ignored. The restriction for the maximum per-residue deviation was set
to (2.5, 2.5), (2.0, 2.5), and (3.0, 3.0) for the Cα /Cα and side-chain / side-chain distances,
respectively.

The other two queries were performed giving SPASM only the positions of the highly
conserved residues (CCFHH), where the Phe (residue 144) was allowed to be substituted
by Leu, Ile, Val, Met, Tyr, Trp, or Cys. The �rst query was constrained to conserve the
neighboring residues, as well as the gap sizes. For the second query, these restrictions were
removed.

98 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

(a) Time and number of results compared to SPASM searches.

Query Time Distinct Distinct
[s] results PDB �les

SPASM (a) 658,9 64 45
SPASM (b) 640,5 43 29
SPASM (c) 676,7 69 48
SPASM CCFHH 261,2 106 60
SPASM CCHH 260,5 46 31
PAST, α, |Σ| = 36, Tol. 3 4,5 99 57
PAST, α, |Σ| = 36, Tol. 8 22,4 275 134

(b) Coverage of PROSITE, CATH, and SCOP entries compared to SPASM searches.

PROSITE CATH SCOP-Fam SCOP-SF All
Query hits hits hits hits hits

(126) % (99) % (116) % (122) % (151) %
SPASM (a) 30 62,5 17 54,8 27 62,8 28 57,1 33 52,4
SPASM (b) 21 43,8 15 48,4 19 44,2 19 38,8 22 34,9
SPASM (c) 30 62,5 18 58,1 28 65,1 30 61,2 35 55,6
SPASM CCFHH 40 83,3 22 71,0 35 81,4 38 77,6 45 71,4
SPASM CCHH 24 50,0 15 48,4 20 46,5 21 42,9 25 39,7
PAST (α,36,±3) 34 70,8 23 74,2 31 72,1 33 67,3 41 65,1
PAST (α,36,±8) 46 95,8 25 80,6 41 95,3 45 91,8 54 85,7

Table 4.11: Query comparison between SPASM and PAST.

4.8. APPLICATIONS 99

|Σ| angle Tol. Acc. Nr. of Constr. Search Nr. of Out of Distinct
int. int. nodes [min] [s] Results RMSD results

4 90◦ 1 270◦ 46.068.590 01:53 0:51.8 2717 41104 748
6 60◦ 1 180◦ 47.055.575 02:05 0:25.5 1918 3294 334
12 30◦ 2 150◦ 46.398.855 02:30 0:20.9 1714 877 262
18 20◦ 3 140◦ 45.596.240 02:59 0:18.9 1618 510 218
24 15◦ 4 135◦ 44.846.093 03:30 0:19.1 1627 433 233
36 10◦ 6 130◦ 43.594.121 04:30 0:18.4 1589 395 216
60 6◦ 10 126◦ 41.808.012 06:29 0:17.6 1549 339 197

Table 4.12: Query comparison: time and number of results for di�erent alphabet sizes
using α-angles.

|Σ| PROSITE CATH SCOP-Fam SCOP-SF All
hits hits hits hits hits

(126) % (99) % (116) % (122) % (151) %
4 124 98,4 93 93,9 108 93,1 113 92,6 138 91,4
6 118 93,7 89 89,9 102 87,9 106 86,9 131 86,8
12 106 84,1 84 84,8 91 78,4 95 77,9 119 78,8
18 95 75,4 74 74,7 80 69,0 84 68,9 108 71,5
24 86 68,3 69 69,7 71 61,2 75 61,5 99 65,6
36 93 73,8 72 72,7 79 68,1 83 68,0 106 70,2
60 86 68,3 69 69,7 71 61,2 75 61,5 99 65,6

Table 4.13: Coverage of PROSITE, CATH, and SCOP entries compared for di�erent al-
phabet sizes using α-angles.

As can be seen, the results of PAST (for the tolerance of ±8) show a better coverage
than any result of SPASM. But, we believe, this is mainly due to the fact, that SPASM
does not consider all chains. Again, we emphasize: we do not claim to produce better
results than any other tool, but, we observe that PAST produces comparable results in
less time.

Search Time and Results Comparison for Varying Alphabet Size

The in�uence of the discretization accuracy, that is, the size of the alphabet, is shown
in Table 4.12 (for α-angles). We observe that, for reasonable alphabet sizes, there are
no large di�erences in the number of results. While the time for the construction of the
PAST increases with the decreasing size of the intervals, the search time shows a contrary
behavior.

100 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Query Results Comparison for Di�erent Angle Types

One of the most important questions is: What type of angles should be preferred? The
answer is a rather strict statement, which becomes clear from looking at the Tables 4.9,
4.15, and 4.16. The best results are obtained in the case, where the virtual torsion angles α
are used to encode the structures.

Uncon�rmed Hits

The experiments with the PAST produced a lot of zinc �nger hits, which are not contained
in either of the databases (at least, at that moment). Some of them (having the best
RMSD values) are shown in Table 4.14. We believe, that most of them are new to the
PDB, and the classi�cation databases do not contain them yet.

Special attention deserve the entries 1fy7, 1mja, 1mjb, and 1mj9. They do not contain
all of the conserved residues and it would be very hard or impossible to �nd them by
sequence-based methods. SCOP annotates for these entries (in family N-acetyl transferase,
NAT; protein Histone acetyltransferase ESA1)

�. . . contains a rudiment CCHC zinc-�nger (res. 191-220). . . �

which con�rms the hit as a true positive.
The entries, that represent the synthetic zinc �ngers (see Section 4.8.1), are also found

using PAST together with α-angles. They exhibit even less detectable sequence similarity
to the classic zinc �ngers, and cannot be found by sequence-based methods. Entry 1psv is
found with tolerance ±3, the other entries, 1fsd and 1fsv are found using tolerance ±10
and ±11, respectively. They are listed in the SCOP family 'Zinc �nger based beta-beta-
alpha motif'.

4.8.4 Other Applications

There is a vast number of other applications, that can be solved straight forward by using
the PAST. For example, searching all maximal helix or strand sequences of a particular
subtype (q.v. [HT96]) can be used to compute related statistics that are useful in protein
structure prediction. These problems include the following questions (among others):

• How frequent is each of the subtypes of helices and strands?

• How many helices are two-sided polar/hydrophobic?

• What amino acids are preferred in π- or 310-helices?

Of course, the same applies to small motifs like sandwiches, metal- or nucleic acid-binding
structures [SGJT04], or larger functional motifs. In general, the determination of the
frequency of occurrence for arbitrary small structure fragments will be an important appli-
cation, since this measure is an essential part of functions rating the signi�cance of hits as
BLAST-like E-values or P-values. Further applications include electron density map inter-
pretation, loop closure, and model building [Gre85, RR85, JK97, CD03, KGLK05, JT86].

4.8. APPLICATIONS 101

PDB file Chain First Last Amino acid sequence MaxD aRMSD AvgD CaRMSD

1xf7 A 5 25 CKTCQRKFSRSDHLKTHTRTH 22.5 9.6 7.4 0.39

2cot A 21 41 CDECGKSFSHSSDLSKHRRTH 16.1 8.1 6.2 0.48

1x6e A 17 37 CVECGKAFSRSSILVQHQRVH 24.2 10.3 8.2 0.56

1x6f A 28 48 CKHCDSKLQSTAELTSHLNIH 66.9 22.9 13.4 0.64

2cse W 183 203 CHVCSAVLFSPLDLDAHVASH 17.5 10.6 9.2 0.65

1ej6 C 183 203 CHVCSAVLFSPLDLDAHVASH 17.5 10.6 9.2 0.65

2cot A 49 69 CDECGKAFIQRSHLIGHHRVH 27.4 11.9 9.3 0.67

1wjp A 45 65 CPYCSLRFFSPELKQEHESKC 33.7 13.0 11.0 0.68

1x6e A 45 65 CLECGKAFSQNSGLINHQRIH 38.3 13.6 9.8 0.68

1x6h A 50 70 CSKCGKTFTRRNTMARHADNC 31.5 10.3 7.7 0.70

1x5w A 12 32 CSECSYSCSSKAALRIHERIH 49.8 17.1 11.8 0.71

1rik A 5 25 CPECPKRFMRSDHLTLHILLH 27.7 14.1 12.0 0.74

2ct1 A 18 38 CYICHARFTQSGTMKMHILQK 22.0 11.6 9.5 0.83

1wjp A 19 39 CRLCNAKLSSLLEQGSHERLC 48.1 19.5 13.3 0.86

2ctd A 65 85 CHHCGKQLRSLAGMKYHVMAN 23.2 11.1 8.5 0.87

1fy7 A 198 218 DDFTLQYFGSKKQYERYRKKC 37.9 14.1 10.7 0.87

1mja A 198 218 DDFTLQYFGSKKQYERYRKKC 37.8 14.0 10.7 0.87

1mjb A 198 218 DDFTLQYFGSKKQYERYRKKC 37.9 14.1 10.7 0.87

1mj9 A 198 218 DDFTLQYFGSKKQYERYRKKC 30.3 11.7 9.3 0.90

1x5w A 40 60 CNYCSFDTKQPSNLSKHMKKF 49.4 18.7 12.5 0.90

2csh A 40 60 CGVCGKKFKMKHHLVGHMKIH 25.7 12.8 10.2 0.90

1rim A 5 25 CPECPKRFMRSDHLSKHITLH 37.2 15.1 11.8 0.96

2csh A 68 88 CNICAKRFMWRDSFHRHVTSC 27.3 12.8 10.3 0.97

1psv 5 25 ARIKGRTFSNEKELRDFLETF 45.8 20.6 16.0 0.99

1x6h A 18 38 CSHCDKTFRQKQLLDMHFKRY 27.3 12.8 9.8 1.02

1wir A 18 38 CLFCDRLFASAEETFSHCKLE 31.5 15.8 13.1 1.02

1u85 A 10 30 CPDCDWSFSRSDHLALHRKRH 26.2 13.0 11.0 1.04

2ct1 A 48 68 CPHCDTVIARKSDLGVHLRKQ 48.6 19.4 14.5 1.09

1zu1 A 97 117 CPVCNMTFSSPVVAESHYIGK 41.1 18.4 14.1 1.35

1zr9 A 45 65 CLACARYFIDSTNLKTHFRSK 32.3 16.6 13.3 1.38

Table 4.14: Sequences not contained in the results of PROSITE, CATH and SCOP.

102 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

PROSITE CATH SCOP-Fam SCOP-SF All
Tol. hits hits hits hits hits

(126) % (99) % (116) % (122) % (151) %
0 1 0,8 1 1,0 1 0,9 1 0,8 1 0,7
1 6 4,8 6 6,1 6 5,2 6 4,9 6 4,0
2 28 22,2 29 29,3 25 21,6 25 20,5 30 19,9
3 38 30,2 38 38,4 32 27,6 32 26,2 42 27,8
4 48 38,1 45 45,5 40 34,5 42 34,4 54 35,8
5 58 46,0 53 53,5 49 42,2 52 42,6 66 43,7
6 63 50,0 57 57,6 53 45,7 57 46,7 74 49,0
7 65 51,6 60 60,6 53 45,7 58 47,5 78 51,7
8 68 54,0 63 63,6 54 46,6 59 48,4 81 53,6
9 69 54,8 63 63,6 55 47,4 60 49,2 82 54,3
10 69 54,8 63 63,6 55 47,4 60 49,2 82 54,3
13 74 58,7 65 65,7 60 51,7 65 53,3 87 57,6

PROSITE CATH SCOP-Fam SCOP-SF All
Tol. �les �les �les �les �les

(48) % (31) % (43) % (49) % (63) %
0 1 2,1 1 3,2 1 2,3 1 2,0 1 1,6
1 6 12,5 6 19,4 6 14,0 6 12,2 6 9,5
2 15 31,3 16 51,6 13 30,2 13 26,5 16 25,4
3 19 39,6 17 54,8 17 39,5 17 34,7 20 31,7
4 21 43,8 18 58,1 19 44,2 21 42,9 24 38,1
5 28 58,3 22 71,0 25 58,1 28 57,1 33 52,4
6 32 66,7 24 77,4 28 65,1 32 65,3 39 61,9
7 32 66,7 24 77,4 28 65,1 33 67,3 40 63,5
8 32 66,7 24 77,4 28 65,1 33 67,3 40 63,5
9 33 68,8 24 77,4 29 67,4 34 69,4 41 65,1
10 33 68,8 24 77,4 29 67,4 34 69,4 41 65,1
13 37 77,1 25 80,6 33 76,7 38 77,6 45 71,4

Table 4.15: Coverage of PROSITE, CATH, and SCOP entries compared for di�erent tol-
erances using ψ/ϕ-angles.

4.8. APPLICATIONS 103

PROSITE CATH SCOP-Fam SCOP-SF All
Tol. hits hits hits hits hits

(126) % (99) % (116) % (122) % (151) %
0 1 0,8 1 1,0 1 0,9 1 0,8 1 0,7
1 3 2,4 3 3,0 3 2,6 3 2,5 3 2,0
2 15 11,9 14 14,1 15 12,9 15 12,3 15 9,9
3 31 24,6 28 28,3 27 23,3 27 22,1 34 22,5
4 49 38,9 45 45,5 41 35,3 43 35,2 55 36,4
5 58 46,0 53 53,5 48 41,4 51 41,8 67 44,4
6 63 50,0 55 55,6 51 44,0 55 45,1 73 48,3
7 66 52,4 58 58,6 52 44,8 57 46,7 77 51,0
8 67 53,2 60 60,6 52 44,8 57 46,7 79 52,3
9 67 53,2 60 60,6 52 44,8 57 46,7 79 52,3
10 67 53,2 61 61,6 52 44,8 57 46,7 80 53,0
11 70 55,6 62 62,6 55 47,4 60 49,2 83 55,0
12 76 60,3 63 63,6 60 51,7 65 53,3 89 58,9
13 81 64,3 66 66,7 65 56,0 70 57,4 95 62,9

PROSITE CATH SCOP-Fam SCOP-SF All
Tol. �les �les �les �les �les

(48) % (31) % (43) % (49) % (63) %
0 1 2,1 1 3,2 1 2,3 1 2,0 1 1,6
1 3 6,3 3 9,7 3 7,0 3 6,1 3 4,8
2 13 27,1 12 38,7 13 30,2 13 26,5 13 20,6
3 20 41,7 18 58,1 19 44,2 19 38,8 22 34,9
4 23 47,9 20 64,5 22 51,2 24 49,0 27 42,9
5 27 56,3 22 71,0 25 58,1 28 57,1 33 52,4
6 32 66,7 24 77,4 28 65,1 32 65,3 40 63,5
7 33 68,8 24 77,4 28 65,1 33 67,3 41 65,1
8 33 68,8 24 77,4 28 65,1 33 67,3 41 65,1
9 33 68,8 24 77,4 28 65,1 33 67,3 41 65,1
10 33 68,8 24 77,4 28 65,1 33 67,3 41 65,1
11 35 72,9 24 77,4 30 69,8 35 71,4 43 68,3
12 40 83,3 24 77,4 34 79,1 39 79,6 48 76,2
13 43 89,6 25 80,6 37 86,0 42 85,7 52 82,5

Table 4.16: Coverage of PROSITE, CATH, and SCOP entries compared for di�erent tol-
erances using OCCO-angles.

104 CHAPTER 4. SEARCHING IN PROTEIN STRUCTURE DATABASES

Chapter 5

Motifs and Classi�cation
The best way to have a good idea is to have a lot of ideas.

Linus Pauling

5.1 Identi�cation of Motifs

5.1.1 Previous Work on Motif Detection

The detection of similarities in sequences originates from the classic work of Needleman
and Wunsch. They applied an iterative matrix calculation procedure to the comparison
of amino acid sequences. A number of other heuristic algorithms had been proposed. A
general framework for identi�cation of repeated patterns in strings, arrays, and trees was
described by Karp, Miller, and Rosenberg [KMR72]. Later, metric measures were
investigated to describe similarities or distances of sequence pairs. An algorithm to �nd
segments of maximum similarity for two sequences, allowing for insertions and deletions of
arbitrary length, was published by Smith and Waterman [SW81].

The detection of frequent structural motifs has been investigated using graph-theoretic
abstractions (e.g. clique detection, see [SVPS95, KLW96, KL97, VBK02]), Geometric
Hashing [PA98, LNW01] or a combination of both approaches [WKHK03, WKHK04].

The work of Sagot, Viari, Pothier, and Soldano [SVPS95] attempts to �nd ap-
proximate repetitions in a set of protein structures by de�ning a similarity relation on the
mesh partitions of the Ramachandran map. It extends an earlier algorithm by Soldano,
Viari, and Champesme, which itself is an extension of an algorithm for �nding exact
repetitions by Karp, Miller, and Rosenberg [KMR72]. The method uses the concept
of maximal cliques of the similarity relation and is one of the �rst that does not only apply
dynamic programming to a pair of structure sequences.

Koch, Lengauer, and Wanke [KLW96, KL97] tried to �nd maximal common sub-
structures based on the secondary structure elements. They use a more graph-theoretical
approach by modifying an algorithm by Bron and Kerbosch, which enumerates all max-
imal cliques of a graph. The aim is to �nd maximal common substructures in two or several
graphs, where the nodes represent the secondary structure elements. This is done by re-
ducing the problem to the Maximum Clique Problem of the so-called product graph.
By restricting the search to cliques that represent connected substructures the search space
can be reduced.

105

106 CHAPTER 5. MOTIFS AND CLASSIFICATION

Sagot et al. [SVS97] provide algorithms for �nding substrings that occur with a certain
error in a given number of sequences of the sequence set. In this case, the methods are only
applied to the sequence of amino acids and not to the structure in space. The same applies
for a paper by Marsan and Sagot [MS00], but here su�x trees are used in combination
with the Hamming distance (instead of the Levenshtein/edit distance).

Escalier et al. [EPSV98] present an algorithm that recursively computes common
three-dimensional substructures for two or several proteins. But this method can only be
applied to small instances with about 30 atoms. Otherwise, a two step approach with a
Branch and Bound technique must be applied.

Chew et al. [CHKK99] present an approach that is capable of computing common geo-
metric substructures of only two molecules, but most interestingly the paper also addresses
the problem of detecting common domains, i.e. larger substructures where proximity in
space does not coincide with continuousness along the polypeptide chain. Another in-
teresting point is the use of an alternative backbone representation that is based on the
virtual-bond vectors between consecutive α-carbon atoms.

Geometric Hashing, a method related to the �eld of computer vision, was used to
solve the structural alignment problem. For an application to the alignment of multiple
structures and the detection of common motifs, we refer to the work of Nussinov and
Wolfson [LNW01]. This method is capable of searching for common domains that are
not necessarily contiguous in one chain. Weskamp et al. [WKHK04] proposed a two-step
method that tries to combine the advantages of graph-based clique-detection and geometric
hashing.

A closely related problem to the search for frequently occurring motifs is the k-Common
Substring Problem, where the aim is to �nd the length (and an occurrence) of a longest
substring common to at least k of the K sequences (for all k ∈ [2, K]). Surprisingly, this
problem can be solved in time O(n) where n is the sum of the lengths of all sequences
(see [Hui92]). Please note that this problem di�ers from our setting in that occurrences
are counted only once per sequence; we want to count every single occurrence (even mul-
tiple times in the same string). However, the results of the two problems should not be
too di�erent. A restricting point for the algorithm of Hui is: it applies only to exact
occurrences.

A detailed survey on di�erent aspects of structure comparison and patterns is given by
Eidhammer, Jonassen, and Taylor [EJT99].

There is a vast number of other publications regarding the topic of motif detection, the
discussion of which is far behind the scope of this thesis. For completeness, we just provide
some references for the most important papers, see [Ric85, ATG92, BG96, KJ97, BJVU98,
Kle99, SCH99, BY99, VG01, LP01, BKB02, NBG+02, Vil02, RDR+02, SS03, CP03, SR03,
Mul04, IMP+04, MTT04, Tan04, TXL05, HBW+05, Erd05, PPBS05, JSRS05].

5.1.2 Computation of Average Structures

An important factor regarding the determination of frequent motifs is the question whether
the database holds a representative set of protein structures. In the last years, much e�ort

5.1. IDENTIFICATION OF MOTIFS 107

Figure 5.1: 40 di�erent models of antifreeze protein RD3 of Austrolycichthys brachycephalus
(Antarctic eel pout) [PDB code 1c89]

has been put into the creation of non-redundant sets of PDB �les, but these projects mostly
approached the problem from the viewpoint of sequence similarity. It is not clear, whether
this provides optimal conditions for motif detection. May be, a structural non-redundant
set would produce better results.

Both of these approaches agree in removing the redundancy in the database that is
generated by the existence of several measurements or models of the same molecule. These
structures have an identical sequence of amino acids, and coincide to a large degree, at least
within the structural cores. One solution to the problem could be to simply choose one of
the models, but which one should be preferred? Although, in most cases, there seems to be
a large structural consensus between all structures, there are some signi�cant deviations
at single points for many of the models. Thus, it might be a disadvantage to choose an
arbitrary model. Therefore, we propose to use some kind of average structure. As a rather
obvious �rst step, one might try to compute the average coordinates of each atom, that
is, the barycenter of the respective atom positions. This approach has been proposed, for
instance, by Gerber and Müller, see [GM87]. The method works su�ciently well in
the case where not much deviation from the center occurs, but may lead to strange results
in the other cases (see Figure 5.2).

An important observation regarding the structures to be superimposed in proteomics
is that di�erent models normally di�er only with respect to the torsion angles of the
freely rotatable bonds; they do not disagree much in the bond lengths and bond angles
between corresponding atom pairs. As a consequence, the superimposition of di�erent
models shows some movement along clearly de�ned trajectories, at least for the most part
of the structures. Hence, the problem is the correct parameterization of the average.

108 CHAPTER 5. MOTIFS AND CLASSIFICATION

(a) Trajectory example. Note that movement of the chain ends
is roughly along a rather speci�ed trace.

(b) Counter-example for computing
the consensus structure from the
average coordinates.

Figure 5.2: Computing average structures from average coordinates can lead to strange
results.

5.1. IDENTIFICATION OF MOTIFS 109

A2

A3

A4

A5

A6A1

A

A’

In this �gure, the view is along the

axis of rotation. A1,. . . ,A6 mark

the atom positions within the di�er-

ent models, A marks their barycenter,

which is apparently no good choice for

some kind of average structure.

Figure 5.3: Computing average structures from average angles.

Computing the center of gravity (at average coordinates) may result in an unnatural
consensus structure where the resulting point does not agree well with a virtual median
of the structures. In extreme cases the point would not lie on the trace of the respective
atoms at all, for instance, if the scatter plot is kind of arched or circular, see Figure 5.2. A
better approach of computing a consensus structure separates the nearly constant radius
of rotation from the comparatively variable torsion angle.

The question immediately arising is: How can we compute an average angle? For only
two angles ϕ1 and ϕ2, the answer is simple. Decide, which of the two intervals [ϕ1, ϕ2] and
[ϕ2, ϕ1] is the smaller one, compute the arithmetic mean of the angle values ϕ̄ = (ϕ1+ϕ2)/2
and add (or subtract, resp.) 180◦ or π if the mean was in the larger interval (the operation
depends on the global angle interval being either from 0◦ to 360◦ or from −180◦ to 180◦).
The problem gets much more intricate if three or more angles are involved.

It becomes obvious that the arithmetic mean angle is not a promising approach. Also,
we notice that there are degenerate instances, where no unique solution can be found.
Examples are two angles which are separated by two equal intervals of 180◦. For more
than three angles, this case occurs, for instance, if the intervals between 'neighboring'
angles have all the same size. While this (arti�cial) problem cannot be solved by any
method computing a consensus structure, it would be advantageous to be informed, if a
situation close to one of these anomalies is given.

At the end, the solution we propose to the problem is very simple. In principle, the
center of gravity was not a completely wrong approach, but it must be applied to the
right measure. Instead of computing average atom coordinates, we use it to compute
the barycenter of the angles' representations on the unit circle. What we get, is a point
somewhere within the circle, that represents the average representation of the angles. This
point is also associated with an angle, which can be interpreted in the same way as the
input angles (by extending the line from the circle center to the circle). While input angles

110 CHAPTER 5. MOTIFS AND CLASSIFICATION

are always represented by a point on the unit circle (that is, with radius 1), the average
angle is associated with a radius between zero and one. The size of this radius is now
a measure for the coherence of the input set. This is a very intuitive concept, since a
set of very similar angles will produce a barycenter that is close to the circle, and has
thus radius 1. An (arti�cial) set of ideally symmetrical angles will give a barycenter that
coincides with the center of the circle, that is radius 0. In this case, no prevalent direction
of the angles can be returned, a fact that agrees with the comments made above.

5.1.3 Extraction of Frequent Substructures

The identi�cation of frequently occurring substructures requires an exact de�nition of the
objects to be found. If we de�ne motifs to be substrings of speci�ed length that occur at
least in a given number of sequences, then we should apply the approach of Hui [Hui92].
Please note, that many structural patterns are repeated very often within the same chain.
Since we want to count di�erent occurrences in the same sequence separately, we could
also count the number of leaves in the subtree of each node. Traversing the tree and
reporting all nodes having a path label (from the root) of su�cient length would give the
most frequent exactly repeated strings.

As has been discussed in Sections 4.7.4, the exact matching of structure sequences
may lead to quite unsatisfactory results. Therefore, we stick to the approach of tolerant
searching. This time, we have to (virtually) apply an all-against-all comparison of all
su�xes in the database. This seems to be a hard job, but we can save a lot of time using
the PAST.

At �rst, we have to decide about the alphabet size of the index to be used. We should
use a moderate value, since extreme values for the number of intervals could a�ect run time
and results signi�cantly. For the intended comparison process, we assume each node of
the generalized su�x tree to be augmented by two counters. After constructing the PAST
for a certain alphabet size, the �rst counter is used to store the number of leaves in the
subtree for each node, that is the number of occurrences of the respective path label. This
can be done recursively, using a depth-�rst search (DFS), incrementing the current counter
after returning from a descent to a child node. The second counter has to be initialized to
zero. It will be used to hold the number of similar structures, that is, the number of angle
substrings matching the path label of the node within a given tolerance.

We give now a schematic description of the motif �nding process. To compute the
counter values of the second kind (approximate match counters), we traverse the su�x
tree from left to right (see Algorithm 7). If the length of the path label represented by
the current node, is below the desired motif length, we recursively descend to the children
(if the node itself is not a leaf). If we visit a node of su�cient depth (a pattern), that
is, its path label has length at least the motif length, we use that (entire) path label to
search for approximate matches which do not come before the string of the pattern in
a lexicographical ordering. This means, we are searching for characters that are equal
to or greater than the query characters according to lexicographical sorting. This task
is performed by Algorithm 8. We call it with the number of leaves and a reference of

5.1. IDENTIFICATION OF MOTIFS 111

the pattern node's own similarity counter as arguments. We must take care whether the
current path label is yet equal, or greater than the path label of the calling source node.
In the �rst case, we may traverse the tree by all possible branches, whereas in the second
case, we have to restrict the traversal to patterns greater than or equal to the pattern
string (with respect to lexicographical ordering).

If we �nd a matching node of su�cient depth, we increment its similarity counter by
the number of nodes of the original calling (pattern) node. The other way round, we
increment the similarity counter of the calling node by the number of children of the
currently discovered node (via the traceback reference parameter). After returning to the
�rst procedure, we check whether the number of similar structures is greater than a given
threshold and display the result if necessary. Please note, that similarity counters cannot
be propagated from right to left (due to the traversal of nodes that are never before the
pattern in a lexicographical ordering). Thus, after returning to Algorithm 7) from a call
to Algorithm 8, we always have the �nal count of approximate hits stored in the similarity
counter.

Consequently, the method returns all motifs ful�lling the requirements of minimum
length and minimum number of approximate occurrences.

Algorithm 7: GenSu�xTree::motifTraverse(node, prefLen)

Impl. Arg.: motifLength // the desired motif length

motifMinCount // the minimum number of occurrences

motifTolerance // the search ranges

greaterThanMotif // GST position flag

Expl. Arg.: node // the current node of the GST

prefLen // the current prefix length

Result: Traverses the GST and calls updateSimCounters()

v←−node
curPrefLen←− prefLen + edgeLength(node)
if curPrefLen > motifLength or

(curPrefLen = motifLength and node is no leaf) then
greaterThanMotif ←−false
updateSimCounters (rootNode, 0, &(strings[v→stridx][v→start - prefLen]),
v→count, v→simcount)
if v→simcount ≥ motifMinCount then

reporter→reportHit(v→stridx, v→start - prefLen, motifLength)

else
for child←−(v→children); child6=NULL; child←−(child→next) do

motifTraverse (child, curPrefLen)

112 CHAPTER 5. MOTIFS AND CLASSIFICATION

Algorithm 8: GenSu�xTree::updateSimCounters(node, prefLen, p, toAdd, srcCnt)

Expl. Arg.: node // the current node of the GST

prefLen // the current prefix length

p // pointer to the current pattern

toAdd // the number to be added to all counters

srcCnt // reference to the counter of the calling node

Result: Traverses the GST for lexicographical greater strings

v ←− node
curPrefLen = prefLen + edgeLength(node)
if curPrefLen> motifLength or

(curPrefLen= motifLength and node is no leaf) then
v→simcount += toAdd
srcCnt+= v→count

else
c2 ←−p[curPrefLen]
for child←−v→children; child; child←−child→next do

c1 ←−�rst character of child
d ←−c1− c2
if (greaterThanMotif or d ≥ 0) and

(d≤motifTolerance or alphabetSize-d ≤ motifTolerance or
alphabetSize+d ≤ motifTolerance) and (c1 6= SENTINEL) then
greaterChangedHere ←−false
if (not greaterThanMotif) and d>0 then

greaterThanMotif ←−true
greaterChangedHere ←−true

last←− curPrefLen + child→ end− child→ start
if last ≥ motifLength then

last ←−motifLength-1
match ←−true
for i←−curPrefLen + 1x; i ≤ last; i←− i + 1 do

c1 ←− character i of child
c2 ←−p[i]
d ←−c1− c2
if (d ≤ motifTolerance or alphabetSize-d ≤ motifTolerance or

alphabetSize+d ≤ motifTolerance) and c1 6= SENTINEL then
match ←−false
break

if match then
updateSimCounters(child, curPrefLen, p, toAdd, srcCnt)

if greaterChangedHere then
greaterThanMotif ←−false

5.2. PROTEIN STRUCTURE CLASSIFICATION 113

5.2 Protein Structure Classi�cation

It is a nearby question to ask whether naturally occurring proteins can be grouped in terms
of similar structure. On the one hand, the aim is to derive either possible functions for new
proteins having determined structures, or, by contrast, to deduce a probable structure for
proteins of known function (by looking at the functions and structures of proteins within the
same class). On the other hand classifying proteins into groups of similar (sub)structures
may allow conclusions about phylogenetic relationships of structures and species, which is
sometimes impossible to derive by sequence-based methods. However, for this last point, we
emphasize that structural coincidence is not always due to phylogenetic relationship (that
is, by inherited genetic information). Sometimes, the structural properties of unrelated
proteins were gradually reduced over time, which is due to the selective pressure of evolution
for similar functional requirements. This process is called convergent evolution. (It is in
contrast to divergent evolution, where genes or proteins of a common ancestor are gradually
changed into di�erent sequences.)

This kind of structure classi�cation is currently done �at least in large part� manually.
The most popular examples of structure classi�cation databases are the hierarchies of
SCOP [MBHC95, RB03] and CATH [OMJ+97, OPB+99, OPT03]. Now, it would be a
great advancement, to get this job done automatically. This would improve not only the
expense of human work, it would also lower the in�uence of the prejudice due to human
interaction.

A further reason to group similar structures is to deduce the main principles that govern
the protein folding process, which is essential for structure prediction from sequence, the
most-wanted aim of structural genomics.

5.2.1 The SCOP Database

SCOP (Structural Classi�cation of Proteins) [MBHC95, BCHM96, RB03] is a database that
aims at providing information on the structural and evolutionary relationships for proteins
of known structure. The classi�cation has been created manually by visual inspection,
assisted by tools for automatic structure comparison.

Within the hierarchy, the units of categorization are the domains, since they are the
typical parts of function and protein evolution

SCOP classi�es proteins according to the following hierarchy:

1. Class

There are four major classes, that classify the protein structure according to the
main organization of secondary structure elements: all α, all β, α/β, and α+β. The
meaning of the two �rst classes should be clear, the di�erence between the two latter
classes is: α/β-classi�ed structures consist of a single sheet, where α-helices connect
the ends of the strands. Two major forms are seen: in the �rst variant, the β-sheet is
wrapped to form a barrel-like structure that is surrounded by α-helices. In the other
variant, the more planar sheet has the helices on the side positions. The members of

114 CHAPTER 5. MOTIFS AND CLASSIFICATION

the α+β-class have the α- and β-parts more separated. The strands are there usually
joined by hairpins, not by the helices (thus leading to antiparallel sheets). α + β-
structures may have a (small) cluster of helices, which is tightly packed against the
sheet. Additionally to the four major classes, there are some special ones containing
multidomain proteins (several domains which are never found separately), membrane
proteins, small proteins (stabilized by disul�de bridges or metal ligands rather than
hydrophobic cores), coiled coil structures, peptides, and designed proteins.

2. Fold

Proteins are de�ned as having the same fold, if there is a general structural similarity
detected, that is, if they have similar secondary structures arranged in the same way.
Proteins of the same fold may or may not have a common evolutionary origin. Often
they have peripheral secondary structure elements that di�er largely in size and
shape.

3. Superfamily

Proteins having only a weak sequence similarity, but signi�cant functional similari-
ties that suggest a common evolutionary origin, are grouped in superfamilies. The
common parts may be small if they comprise the important active site(s).

4. Family

SCOP families represent groups of proteins that exhibit a clear evolutionary rela-
tionship, that is, they have a high pairwise sequence identity (30% or more), or they
exhibit clear similarities in structure and function.

5. Protein (Domain) and Species

The unit of function in a particular protein, the actual domain of a certain species,
is at the lowest level of the hierarchy.

5.2.2 The CATH Database

CATH [OMJ+97, OPB+99, OPT03] is a hierarchical classi�cation too. The name is an
acronym of the four major levels of organization: Class, Architecture, Topology, and
Homology. The most general classi�er (Class) groups entries according to similar sec-
ondary structure composition. The architecture level characterizes the shape, which is
made through the orientation and arrangement of the di�erent secondary structure ele-
ments. The topology describes the sequential connectivity of the parts. Entries having
su�ciently similar structure and function are considered to be evolutionary related, and
they are aggregated in the same homology class. If the sequence identity is 35% or above,
the structures are put into the same sequence family.

5.3. CONTAINEDNESS AND SIMILARITY 115

(a) SCOP classi�cation

Class
Fold
Superfamily
Family
Protein Domain
Species
PDB Entry Domain

(b) CATH classi�cation

C Class
A Architecture
T Topology
H Homologous Superfamily
S Sequence Family
N Non-identical
I Identical
D Domain

Table 5.1: Classi�cation scheme of SCOP and CATH.

5.2.3 Remarks

Besides SCOP and CATH, there are also other tools and databases that feature the
classi�cation of protein structure, such as DALI/FSSP [HS96, HS97], ProtClass [AT05],
SARF2 [AF96], and others [Smi04]. They all use more or less di�erent measures and
methods, but most of them share one essential property: they try to classify the existing
structures according to a hierarchy, that is, a tree-like structure. This may or may not be
an appropriate approach. It remains unclear so far, whether a hierarchical decomposition
does contain all relevant relationships of the vast number of families.

5.3 Containedness and Similarity

A straight forward solution to the problem of classifying structures into groups of high
pairwise similarity would be to perform a simple all-against-all structure comparison of
the whole database (e.g. using the algorithm from [BYG99]). This would assign a (scalar)
measure to each pair, indicating whether these two structures are very similar on the whole
or have some common parts (which includes the case that one structure is completely
contained within the other). Since we do not want to use sequence similarity measures
for known reasons, the similarity of two structures could be measured for example by the
RMSD of the (backbone) atom positions. But, there is one hitch: the computation of
an RMSD value requires a proper (that is, the best possible or, at least, a near-optimal)
assignment of corresponding atoms within the comparison pair. Thus, it remains unclear
how this could be done e�ciently, since even the number of pairs is quadratic in the (large)
number of structures.

Now that we learned that an all-against-all comparison takes too much time, we follow
the idea that rating the similarity of structures should be con�ned to structures that are not
completely di�erent. In order to reduce the number of necessary pairwise comparisons, we
�nd, this could be greatly supported by the Polypeptide Angles Su�x Tree. The procedure
should be as follows. At �rst, we build the PAST of all structures as described in Chapter 4.
Then we iterate over all structures and search them within the database using the PAST.
For all (approximate) matches, we compute the RMSD value and keep the value within

116 CHAPTER 5. MOTIFS AND CLASSIFICATION

the containedness-similarity matrix . At the end, we apply a spectral clustering algorithm
to the matrix that was originally applied by Ernst to the clustering of gene expression
pro�les [Ern03]. The result is a partition of the set of structures that should be a good
classi�cation scheme of the database. For a sequence-based approach, see [PCCS03].

The algorithm can be further improved, if we apply the same principle of lexicographical
traversal as in the algorithm for computing frequent substructures (see Algorithms 7 and 8).
Again, we traverse the whole PAST according to a lexicographical ordering, and call a
second procedure at each time, when we reached a node of su�cient depth. This depth
has to be given as an input to the algorithm. It measures whether the algorithm performs
a global or a more local (sub-)structure comparison.

The second function gets a pointer to the calling node and starts (as in the motif
detection algorithm) at the root a tolerant search for the path label of the 'calling node',
considering only nodes that are greater with respect to the lexicographical ordering. For
each leaf having su�cient path length (that is, representing a su�x of su�cient size),
the algorithm computes the RMSD of an optimal superimposition with all substructures
represented by a leaf in the subtree of the calling node. If this value is below a certain
threshold, it is stored in a (sparse) similarity matrix for all sequence pairs. If there has
been a successful comparison before, the minimum of both values is kept.

The result is a (sparse) distance matrix of all sequence pairs (with respect to the given
substructure length), which can be clustered using, for instance, the algorithm by Ernst.

A more general measure of structural similarity must take into account local as well as
global similarity. Thus, the described algorithm has to be performed several times using
di�erent settings. The resulting similarity measures (sparse matrices) should be combined
by a function that suites the need of the actual application (to emphasize more local or
more global similarity).

5.4 Results

First experiments for the identi�cation of frequent substructures indicate running times
between several hours and several days, depending on the input parameters (discretization
accuracy, required length of the common substructure, and search tolerance). Automatic
classi�cation clearly consumes more time, since the root-mean-square deviations for the
hits must be computed. To accelerate the RMSD calculation, methods can be used, that
do not directly compute the superpositioning rotation. Some of the methods are faster, if
only the RMSD value is required. Mostly, some time can be saved if the last square root
operation for computing the RMSD is skipped. Instead the squared RMSD is compared
to the corresponding threshold.

Although �rst experiments for these methods led to promising and comprehensible
results, we forbear from presenting the large lists in this work. Anyway, these results have
to be tested and interpreted by experts of molecular biology, not by computer scientists.

Chapter 6

Conclusion

That’s one giant leap for [a] man, one small step for mankind.
The Author

In this thesis, we emphasized the need for fast methods capable of searching huge
structure databases like the PDB. We pointed out the drawbacks of currently used methods
which sacri�ce accuracy for speed.

We proposed a new approach for indexing structure databases using translation- and
rotation-invariant measures that are stored in a generalized su�x tree after discretization.
We compared di�erent measures according to their suitability for structure searching. Our
experiments showed the applicability of the method, by comparing the result sets of the
experiments to established tools and databases like PROSITE, SCOP, CATH, and SPASM.
As we have seen, the virtual bonds dihedral angle α performs better than other measures.
Using this measure, our method achieved comparable results to the other tools, while being
much faster�often by an order of magnitude.

In the last part of the thesis, we showed how to apply the new method to other problems
of structural biology, such as the identi�cation of frequent substructures (motifs) and the
automatic classi�cation of the entries of structural databases. We provided a convenient
method for computing average structures from several models of the same molecule, which
might be of more general interest to the community.

At the end, this was an essentially interdisciplinary work, that reached from the basic
principles of evolution, based on biochemical reactions, to using e�cient algorithms and
advanced mathematics such as the quaternion concept.

What is left, is to say that all the methods described in this thesis have been imple-
mented in the Protein Structure (ProSt) Project. This includes a WWW service, that
allows everyone interested to search for structures in the PDB:

http://past.in.tum.de/

117

118 CHAPTER 6. CONCLUSION

Appendix A

List of PAST Query Results

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

1a1f A 137 157 CRICMRNFSRSDHLTTHIRTH 5.5 2.5 2.1 0.16

1a1f A 165 185 CDICGRKFARSDERKRHTKIH 17.5 7.3 6.0 0.50

1a1g A 109 129 VESCDRRFSDSSNLTRHIRIH 56.7 25.4 17.7 1.97

1a1g A 137 157 CRICMRNFSRSDHLTTHIRTH 4.1 2.3 1.9 0.12

1a1g A 165 185 CDICGRKFARSDERKRHTKIH 13.9 7.3 6.2 0.55

1a1h A 109 129 VESCDRRFSQSGSLTRHIRIH 74.3 24.9 16.4 2.18

1a1h A 137 157 CRICMRNFSRSDHLTTHIRTH 3.8 2.0 1.7 0.12

1a1h A 165 185 CDICGRKFARSDERKRHTKIH 11.9 6.6 5.7 0.54

1a1i A 109 129 VESCDRRFSRSADLTRHIRIH 74.2 24.0 14.4 1.92

1a1i A 137 157 CRICMRNFSRSDHLTTHIRTH 6.4 2.8 2.2 0.13

1a1i A 165 185 CDICGRKFARSDERKRHTKIH 12.0 6.9 6.1 0.54

1a1j A 109 129 VESCDRRFSRSADLTRHIRIH 75.7 25.0 15.6 1.91

1a1j A 137 157 CRICMRNFSRSDHLTTHIRTH 0.0 0.0 0.0 0.00

1a1j A 165 185 CDICGRKFARSDERKRHTKIH 16.5 7.4 6.3 0.59

1a1k A 109 129 VESCDRRFSRSADLTRHIRIH 65.7 22.6 13.2 1.83

1a1k A 137 157 CRICMRNFSRSDHLTTHIRTH 6.2 2.9 2.3 0.15

1a1k A 165 185 CDICGRKFARSDERKRHTKIH 12.4 6.2 5.4 0.55

1a1l A 109 129 VESCDRRFSRSDELTRHIRIH 67.9 23.3 14.5 1.89

1a1l A 137 157 CRICMRNFSRSDHLTTHIRTH 6.2 2.5 2.0 0.13

1a1l A 165 185 CDICGRKFARSDERKRHTKIH 11.9 7.3 6.4 0.56

1a9x A 714 741 VRAAMEIVYDEADLRRYFQTA 54.2 27.2 21.9 1.68

1a9x C 2714 2741 VRAAMEIVYDEADLRRYFQTA 51.7 25.6 20.7 1.65

1a9x E 4714 4741 VRAAMEIVYDEADLRRYFQTA 49.1 24.7 19.7 1.61

1a9x G 6714 6741 VRAAMEIVYDEADLRRYFQTA 47.1 24.4 19.8 1.58

1aay A 109 129 VESCDRRFSRSDELTRHIRIH 52.9 19.9 13.2 1.97

1aay A 137 157 CRICMRNFSRSDHLTTHIRTH 7.5 3.1 2.4 0.17

1aay A 165 185 CDICGRKFARSDERKRHTKIH 12.4 6.5 5.5 0.47

119

120 APPENDIX A. LIST OF PAST QUERY RESULTS

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

1ard 106 126 CEVCTRAFARQEHLKRHYRSH 16.9 8.5 6.9 0.57

1are 106 126 CEVCTRAFARQEALKRHYRSH 17.7 8.8 7.2 0.49

1arf 106 126 CEVCTRAFARQEYLKRHYRSH 21.3 10.3 7.7 0.50

1b70 B 234 254 LFAAGMRPINNVVDVTNYVML 72.0 30.7 22.3 1.83

1b7y B 234 254 LFAAGMRPINNVVDVTNYVML 77.1 32.0 23.3 1.86

1bbo 4 24 CEECGIRXKKPSMLKKHIRTH 26.4 13.2 10.0 1.01

1bbo 32 52 CTYCNFSFKTKGNLTKHMKSK 41.1 20.8 16.3 1.19

1bfi 68 88 FAEPYNLYSSLKELVLHYQHT 54.0 23.2 18.4 1.90

1bfj 68 88 FAEPYNLYSSLKELVLHYQHT 42.5 21.4 15.9 2.02

1bhi 11 31 APGCGQRFTNEDHLAVHKHKH 65.2 25.6 16.5 1.95

1by8 A 15 35 KKTHRKQYNNKVDEISRRLIW 78.2 28.4 22.7 2.32

1c30 A 714 741 VRPAMEIVYDEADLRRYFQTA 52.1 25.9 20.7 1.81

1c30 C 714 741 VRPAMEIVYDEADLRRYFQTA 51.0 25.0 20.4 1.76

1c30 E 714 741 VRPAMEIVYDEADLRRYFQTA 60.2 27.2 21.6 1.75

1c30 G 714 741 VRPAMEIVYDEADLRRYFQTA 52.8 24.9 19.4 1.73

1c3o A 714 741 VRPAMEIVYDEADLRRYFQTA 50.7 24.9 19.4 1.80

1c3o C 714 741 VRPAMEIVYDEADLRRYFQTA 48.2 24.2 19.2 1.81

1c3o E 714 741 VRPAMEIVYDEADLRRYFQTA 53.4 26.0 20.7 1.78

1c3o G 714 741 VRPAMEIVYDEADLRRYFQTA 51.1 24.8 19.7 1.74

1ce8 A 714 741 VRPAMEIVYDEADLRRYFQTA 43.6 21.5 16.6 1.63

1ce8 C 714 741 VRPAMEIVYDEADLRRYFQTA 51.5 23.7 18.6 1.54

1ce8 E 714 741 VRPAMEIVYDEADLRRYFQTA 55.4 25.2 19.9 1.57

1ce8 G 714 741 VRPAMEIVYDEADLRRYFQTA 55.0 25.6 20.3 1.55

1cs0 A 714 741 VRPAMEIVYDEADLRRYFQTA 49.7 25.1 19.9 1.78

1cs0 C 714 741 VRPAMEIVYDEADLRRYFQTA 49.4 24.3 19.7 1.77

1cs0 E 714 741 VRPAMEIVYDEADLRRYFQTA 53.6 24.8 19.7 1.75

1cs0 G 714 741 VRPAMEIVYDEADLRRYFQTA 52.4 24.4 18.9 1.74

1cwy A 418 438 LADWGITFREEEEVPWALMHL 63.4 23.4 17.7 2.37

1ecw A 87 107 CIHAEEKVKHTEEAKQIVQRH 63.0 23.9 15.9 1.70

1ed1 A 87 107 CIHAEEKVKHTEEAKQIVQRH 67.8 25.5 16.6 1.70

1eiy B 234 254 LFAAGMRPINNVVDVTNYVML 62.5 30.1 23.2 1.82

1ej6 C 183 203 CHVCSAVLFSPLDLDAHVASH 17.5 10.6 9.2 0.65

1esw A 418 438 LADWGITFREEEEVPWALMHL 65.7 24.0 18.2 2.39

1f2i G 1109 1129 VESCDRRFSRSDELTRHIRIH 73.2 24.1 14.2 1.84

1f2i G 1137 1157 CRICMRNFSRSDHLTTHIRTH 11.6 5.4 4.4 0.46

1f2i H 2109 2129 VESCDRRFSRSDELTRHIRIH 72.5 24.3 14.3 1.90

1f2i H 2137 2157 CRICMRNFSRSDHLTTHIRTH 8.0 4.1 3.3 0.26

1f2i I 3109 3129 VESCDRRFSRSDELTRHIRIH 70.4 23.5 13.0 1.89

1f2i I 3137 3157 CRICMRNFSRSDHLTTHIRTH 10.6 5.6 4.5 0.34

1f2i J 4109 4129 VESCDRRFSRSDELTRHIRIH 62.9 21.9 11.8 1.90

1f2i J 4137 4157 CRICMRNFSRSDHLTTHIRTH 7.8 4.3 3.7 0.28

1f2i K 5109 5129 VESCDRRFSRSDELTRHIRIH 71.5 24.1 13.4 1.91

1f2i K 5137 5157 CRICMRNFSRSDHLTTHIRTH 17.8 10.9 9.2 0.48

1f2i L 6137 6157 CRICMRNFSRSDHLTTHIRTH 10.7 5.0 3.9 0.34

121

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

1fp8 A 418 438 LADWGITFREEEEVPWALMHL 54.9 22.0 17.4 2.40

1fp9 A 418 438 LADWGITFREEEEVPWALMHL 66.2 24.3 18.4 2.43

1fv5 A 11 31 CLPCGIAFSSPSTLEAHQAYY 57.6 18.3 13.7 1.40

1fy7 A 198 218 DDFTLQYFGSKKQYERYRKKC 37.9 14.1 10.7 0.87

1g2d C 109 129 VESCDRRFSQKTNLDTHIRIH 63.6 17.8 10.7 1.96

1g2d C 137 157 CRICMRNFSQHTGLNQHIRTH 23.8 8.7 6.4 0.44

1g2d C 165 185 CDICGRKFATLHTRDRHTKIH 22.3 7.9 6.2 0.49

1g2d F 209 229 VESCDRRFSQKTNLDTHIRIH 53.6 15.1 9.8 1.88

1g2d F 237 257 CRICMRNFSQHTGLNQHIRTH 15.9 7.4 6.3 0.45

1g2d F 265 285 CDICGRKFATLHTRDRHTKIH 20.3 7.1 5.4 0.45

1g2f C 109 129 VESCDRRFSQKTNLDTHIRIH 63.0 17.5 11.0 1.95

1g2f C 137 157 CRICMRNFSQQASLNAHIRTH 18.4 6.4 4.6 0.31

1g2f C 165 185 CDICGRKFATLHTRTRHTKIH 17.2 6.9 5.7 0.47

1g2f F 209 229 VESCDRRFSQKTNLDTHIRIH 48.0 15.9 10.3 1.94

1g2f F 237 257 CRICMRNFSQQASLNAHIRTH 15.8 5.3 3.9 0.31

1g2f F 265 285 CDICGRKFATLHTRTRHTKIH 19.1 7.0 5.6 0.42

1ghs A 195 215 DQNNGLTYTSLFDAMVDAVYA 59.2 15.9 9.2 1.72

1ghs B 195 215 DQNNGLTYTSLFDAMVDAVYA 54.8 14.9 9.0 1.72

1hek A 84 104 AVKXGLQINNVVDGKASFQLL 63.1 27.0 21.3 1.98

1hek B 84 104 AVKXGLQINNVVDGKASFQLL 54.9 23.6 18.1 2.09

1hiw A 87 107 CVHQRIDVKDTKEALDKIEEE 60.4 23.8 16.7 2.01

1hiw B 87 107 CVHQRIDVKDTKEALDKIEEE 57.0 23.7 17.7 2.15

1hiw C 87 107 CVHQRIDVKDTKEALDKIEEE 61.6 23.3 16.7 1.92

1hiw Q 87 107 CVHQRIDVKDTKEALDKIEEE 59.2 22.7 15.5 1.99

1hiw R 87 107 CVHQRIDVKDTKEALDKIEEE 60.2 23.5 16.7 2.01

1hiw S 87 107 CVHQRIDVKDTKEALDKIEEE 57.1 23.4 16.6 1.98

1jdb K 713 740 VRPAMEIVYDEADLRRYFQTA 54.5 26.2 21.3 1.57

1jk1 A 109 129 VESCDRRFSRSAELTRHIRIH 68.4 22.3 13.8 1.96

1jk1 A 137 157 CRICMRNFSRSDHLTTHIRTH 3.2 1.7 1.4 0.14

1jk1 A 165 185 CDICGRKFARSDERKRHTKIH 14.1 7.3 6.4 0.55

1jk2 A 109 129 VESCDRRFSRSAELTRHIRIH 55.6 25.7 17.4 1.88

1jk2 A 137 157 CRICMRNFSRSDHLTTHIRTH 5.1 2.3 1.9 0.13

1jk2 A 165 185 CDICGRKFARSDERKRHTKIH 16.0 7.4 6.0 0.53

1jkz A 7 27 ADTYRGVCFTNASCDDHCKNK 81.6 35.5 27.4 2.46

1jn7 A 11 31 CSTCDISFNYVKTYLAHKQFY 41.6 15.3 11.9 1.17

1kan A 178 198 GLHHRICYTTSASVLTEAVKQ 64.9 24.6 17.6 1.61

1kan B 178 198 GLHHRICYTTSASVLTEAVKQ 45.8 20.9 15.8 1.60

1kee A 714 741 VRPAMEIVYDEADLRRYFQTA 46.9 23.9 19.1 1.81

1kee C 714 741 VRPAMEIVYDEADLRRYFQTA 48.0 24.2 19.4 1.78

1kee E 714 741 VRPAMEIVYDEADLRRYFQTA 49.3 24.0 19.3 1.79

1kee G 714 741 VRPAMEIVYDEADLRRYFQTA 50.4 24.4 19.5 1.78

1klr A 5 25 CQYCEFRSADSSNLKTHIKTK 43.4 18.8 14.4 0.95

1kls A 5 25 CQYCELRSADSSNLKTHIKTK 37.0 16.3 13.0 0.89

1kny A 178 198 GLHHRICYTTSASVLTEAVKQ 57.7 24.8 18.1 1.67

1kny B 178 198 GLHHRICYTTSASVLTEAVKQ 59.2 26.1 18.7 1.60

122 APPENDIX A. LIST OF PAST QUERY RESULTS

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

1l6n A 87 107 CVHQRIDVKDTKEALDKIEEE 41.7 22.8 18.2 1.73

1lhp A 155 175 ELLTGRKIHSQEEALEVMDML 66.7 24.6 16.5 2.21

1lhp B 155 175 ELLTGRKIHSQEEALEVMDML 64.8 23.9 16.2 2.17

1lhr A 155 175 ELLTGRKIHSQEEALEVMDML 67.7 25.4 17.9 2.21

1lhr B 155 175 ELLTGRKIHSQEEALEVMDML 69.0 23.8 16.3 2.17

1llm C 106 126 CRICMRNFSRSDHLTTHIRTH 6.2 3.3 2.7 0.19

1llm C 134 154 CDICGRKFARSDERKRHRDIQ 42.5 13.1 9.1 0.97

1llm D 206 226 CRICMRNFSRSDHLTTHIRTH 6.9 2.9 2.4 0.13

1llm D 234 254 CDICGRKFARSDERKRHRDIQ 38.8 12.5 8.7 0.96

1m36 A 10 30 CEFCLKYMKSRTILQQHMKKC 21.3 8.9 6.5 0.63

1mey C 7 27 CPECGKSFSQSSNLQKHQRTH 12.8 6.3 4.9 0.38

1mey C 35 55 CPECGKSFSQSSDLQKHQRTH 12.7 5.2 4.1 0.39

1mey C 63 83 CPECGKSFSRSDHLSRHQRTH 14.8 7.9 6.9 0.52

1mey F 7 27 CPECGKSFSQSSNLQKHQRTH 19.2 8.5 5.9 0.47

1mey F 35 55 CPECGKSFSQSSDLQKHQRTH 12.4 6.4 5.3 0.32

1mey F 63 83 CPECGKSFSRSDHLSRHQRTH 29.5 10.7 8.5 0.45

1mey G 63 83 CPECGKSFSRSDHLSRHQRTH 20.5 9.4 7.4 0.46

1mj9 A 198 218 DDFTLQYFGSKKQYERYRKKC 30.3 11.7 9.3 0.90

1mja A 198 218 DDFTLQYFGSKKQYERYRKKC 37.8 14.0 10.7 0.87

1mjb A 198 218 DDFTLQYFGSKKQYERYRKKC 37.9 14.1 10.7 0.87

1mla 230 250 NNVDVKCETNGDAIRDALVRQ 55.3 19.3 13.0 2.25

1njq A 8 28 CSFCKREFRSAQALGGHMNVH 43.4 14.8 10.0 1.00

1nm2 A 230 250 SNKDGRAVASGTEVLDRLVGQ 39.3 19.0 15.8 2.00

1p47 A 109 129 VESCDRRFSRSDELTRHIRIH 83.1 27.3 16.3 2.03

1p47 A 137 157 CRICMRNFSRSDHLTTHIRTH 9.8 3.8 3.0 0.19

1p47 A 165 185 CDICGRKFARSDERKRHTKIH 22.9 8.9 6.6 0.51

1p47 B 109 129 VESCDRRFSRSDELTRHIRIH 60.7 23.1 15.2 1.94

1p47 B 137 157 CRICMRNFSRSDHLTTHIRTH 16.1 7.3 6.1 0.34

1p47 B 165 185 CDICGRKFARSDERKRHTKIH 21.3 9.6 7.5 0.56

1p7a A 14 34 CPDCDRSFSRSDHLALHRKRH 24.5 12.2 9.9 0.79

1paa 134 154 CGLCNRAFTRRDLLIRHAQKI 25.8 11.5 8.5 1.00

1pci A 26 46 MLNHNKFYENVDEKLYRFEIF 56.0 18.1 13.2 2.25

1pci B 26 46 MLNHNKFYENVDEKLYRFEIF 56.0 18.1 13.2 2.25

1pci C 26 46 MLNHNKFYENVDEKLYRFEIF 56.0 18.1 13.2 2.25

1psv 5 25 ARIKGRTFSNEKELRDFLETF 45.8 20.6 16.0 0.99

1qd1 A 286 306 CEKENLFLLQDEHRIRLVVNR 38.5 18.3 14.6 1.74

1qd1 B 2286 2306 CEKENLFLLQDEHRIRLVVNR 47.7 20.5 15.4 1.79

1rft A 155 175 ELLTGRKIHSQEEALEVMDML 69.4 23.1 15.8 2.15

1rfu A 155 175 ELLTGRKIHSQEEALEVMDML 68.8 25.9 18.7 2.16

1rfu B 155 175 ELLTGRKIHSQEEALEVMDML 69.8 26.0 19.0 2.18

1rfu C 155 175 ELLTGRKIHSQEEALEVMDML 71.0 26.1 18.8 2.18

1rfu D 155 175 ELLTGRKIHSQEEALEVMDML 70.5 26.4 19.0 2.17

1rfu E 155 175 ELLTGRKIHSQEEALEVMDML 68.5 26.4 19.2 2.18

1rfu F 155 175 ELLTGRKIHSQEEALEVMDML 69.8 25.7 18.4 2.17

1rfu G 155 175 ELLTGRKIHSQEEALEVMDML 70.1 26.4 19.2 2.18

1rfu H 155 175 ELLTGRKIHSQEEALEVMDML 69.7 26.1 18.9 2.18

123

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

1rfv A 155 175 ELLTGRKIHSQEEALEVMDML 67.0 24.1 16.0 2.19

1rfv B 155 175 ELLTGRKIHSQEEALEVMDML 68.2 23.7 15.4 2.17

1rik A 5 25 CPECPKRFMRSDHLTLHILLH 27.7 14.1 12.0 0.74

1rim A 5 25 CPECPKRFMRSDHLSKHITLH 37.2 15.1 11.8 0.96

1sp1 5 25 CPECPKRFMRSDHLSKHIKTH 26.7 13.1 11.2 0.83

1sp2 7 27 WSYCGKRFTRSDELQRHKRTH 72.2 27.9 18.5 2.16

1srk A 10 30 CRICLSAFTTKANCARHLKVH 23.2 10.5 8.1 0.61

1t36 A 714 741 VRPAMEIVYDEADLRRYFQTA 47.3 25.0 20.0 1.74

1t36 C 714 741 VRPAMEIVYDEADLRRYFQTA 41.4 22.7 18.5 1.73

1t36 E 714 741 VRPAMEIVYDEADLRRYFQTA 55.7 25.2 20.1 1.72

1t36 G 714 741 VRPAMEIVYDEADLRRYFQTA 48.7 23.6 18.7 1.71

1td2 A 151 171 EILCEHAVNNVEEAVLAAREL 71.4 29.7 20.1 2.01

1td2 B 151 171 EILCEHAVNNVEEAVLAAREL 67.8 27.3 18.2 2.03

1tf3 A 17 37 FADCGAAYNKNWKLQAHLSKH 58.3 23.6 16.6 1.87

1tf3 A 47 67 EEGCEKGFTSLHHLTRHSLTH 70.8 23.8 14.5 2.05

1tf3 A 77 97 SDGCDLRFTTKANMKKHFNRF 83.2 31.9 21.7 2.09

1tf6 A 17 37 FADCGAAYNKNWKLQAHLCKH 79.0 25.4 14.8 2.04

1tf6 A 47 67 EEGCEKGFTSLHHLTRHSLTH 87.7 28.9 18.2 2.20

1tf6 A 77 97 SDGCDLRFTTKANMKKHFNRF 67.1 27.6 22.2 1.63

1tf6 A 109 129 FENCGKAFKKHNQLKVHQFSH 56.5 19.6 13.3 1.85

1tf6 A 139 159 HEGCDKRFSLPSRLKRHEKVH 67.9 25.9 17.3 2.08

1tf6 D 17 37 FADCGAAYNKNWKLQAHLCKH 79.7 25.4 14.9 2.02

1tf6 D 47 67 EEGCEKGFTSLHHLTRHSLTH 87.6 29.2 18.4 2.21

1tf6 D 77 97 SDGCDLRFTTKANMKKHFNRF 64.4 26.6 21.5 1.62

1tf6 D 109 129 FENCGKAFKKHNQLKVHQFSH 59.7 20.0 13.2 1.87

1tf6 D 139 159 HEGCDKRFSLPSRLKRHEKVH 67.9 26.3 17.0 2.08

1tt9 A 286 306 CDKEKLFVLEEEHRIRLVVNR 48.0 22.2 17.6 1.73

1tt9 B 286 306 CDKEKLFVLEEEHRIRLVVNR 48.1 22.2 17.6 1.73

1tt9 C 286 306 CDKEKLFVLEEEHRIRLVVNR 48.1 22.2 17.6 1.73

1tt9 D 286 306 CDKEKLFVLEEEHRIRLVVNR 47.9 22.2 17.6 1.73

1u85 A 10 30 CPDCDWSFSRSDHLALHRKRH 26.2 13.0 11.0 1.04

1u86 A 12 32 WPDCDRSFSRSDHLALHRKRH 46.5 19.4 15.3 1.98

1ubd C 327 347 CAECGKAFVESSKLKRHQLVH 21.1 10.6 8.0 0.62

1ubd C 357 377 FEGCGKRFSLDFNLRTHVRIH 77.5 27.6 16.7 2.02

1un6 B 109 129 FENCGKAFKKHNQLKVHQFSH 80.0 29.7 17.7 2.04

1uph A 87 107 CVHQRIDVKDTKEALDKIEEE 69.2 22.9 16.2 1.92

1va1 A 541 561 IQGCGKVYGKTSHLRAHLRWH 34.3 16.3 13.1 1.84

1va2 A 571 591 WSYCGKRFTRSDELQRHKRTH 50.2 19.6 14.6 1.52

1va3 A 599 619 CPECPKRFMRSDHLSKHIKTH 36.2 13.2 10.4 0.69

1vi9 A 151 171 EILCEHAVNNVEEAVLAAREL 86.7 33.1 21.9 2.04

1vi9 B 151 171 EILCEHAVNNVEEAVLAAREL 74.5 30.5 20.3 2.04

1vi9 C 151 171 EILCEHAVNNVEEAVLAAREL 72.7 29.1 19.3 2.04

1vi9 D 151 171 EILCEHAVNNVEEAVLAAREL 72.7 29.9 19.7 2.08

1vl2 C 235 255 NLKDGTEKTDPLELFEYLNEV 62.8 22.5 15.1 2.48

1wir A 18 38 CLFCDRLFASAEETFSHCKLE 31.5 15.8 13.1 1.02

124 APPENDIX A. LIST OF PAST QUERY RESULTS

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

1wjp A 19 39 CRLCNAKLSSLLEQGSHERLC 48.1 19.5 13.3 0.86

1wjp A 45 65 CPYCSLRFFSPELKQEHESKC 33.7 13.0 11.0 0.68

1wjp A 72 92 CLECMRTFKSSFSIWRHQVEV 30.8 17.8 15.2 1.07

1wty A 46 66 LELQGLEARSPRAAIRGAFQV 49.9 21.6 15.1 1.97

1wty B 46 66 LELQGLEARSPRAAIRGAFQV 59.8 24.6 18.3 2.02

1wty C 46 66 LELQGLEARSPRAAIRGAFQV 72.7 25.0 17.9 2.13

1wty D 46 66 LELQGLEARSPRAAIRGAFQV 70.8 23.5 16.3 2.05

1wwp A 46 66 REKEGLEGASPKGVIRLAREV 36.3 16.7 13.3 1.86

1wwp B 46 66 REKEGLEGASPKGVIRLAREV 33.2 16.7 13.9 1.82

1x3c A 32 52 HQGCFAAFTIQQNLILHYQAV 81.2 29.1 19.4 2.13

1x5w A 12 32 CSECSYSCSSKAALRIHERIH 49.8 17.1 11.8 0.71

1x5w A 40 60 CNYCSFDTKQPSNLSKHMKKF 49.4 18.7 12.5 0.90

1x6e A 17 37 CVECGKAFSRSSILVQHQRVH 24.2 10.3 8.2 0.56

1x6e A 45 65 CLECGKAFSQNSGLINHQRIH 38.3 13.6 9.8 0.68

1x6f A 28 48 CKHCDSKLQSTAELTSHLNIH 66.9 22.9 13.4 0.64

1x6h A 18 38 CSHCDKTFRQKQLLDMHFKRY 27.3 12.8 9.8 1.02

1x6h A 50 70 CSKCGKTFTRRNTMARHADNC 31.5 10.3 7.7 0.70

1xf7 A 5 25 CKTCQRKFSRSDHLKTHTRTH 22.5 9.6 7.4 0.39

1xhx D 180 200 QFKQGLDRMTAGSDSLKGFKD 81.1 29.4 19.8 2.48

1xkg A 12 32 KKAFNKSYATFEDEEAARKNF 52.7 21.3 15.3 1.97

1y0j B 11 31 CLPCGIAFSSPSTLEAHQAYY 55.9 19.8 15.8 1.30

1y6e B 57 77 YIDGDVKLTQSMAIIRYIADK 82.5 33.6 24.7 2.27

1ygj A 155 175 ELLTGRKIHSQEEALEVMDML 67.0 26.0 18.9 2.19

1ygk A 155 175 ELLTGRKIHSQEEALEVMDML 63.7 24.9 18.0 2.15

1yhj A 155 175 ELLTGRKIHSQEEALEVMDML 63.6 24.1 17.4 2.13

1yui A 36 56 CPICYAVIRQSRNLRRHLELR 25.0 12.5 9.4 0.96

1yuj A 36 56 CPICYAVIRQSRNLRRHLELR 24.0 12.4 9.7 0.88

1zaa C 9 29 VESCDRRFSRSDELTRHIRIH 71.3 23.6 15.4 1.97

1zaa C 37 57 CRICMRNFSRSDHLTTHIRTH 8.5 4.1 3.5 0.19

1zaa C 65 85 CDICGRKFARSDERKRHTKIH 13.9 7.5 6.2 0.49

1zfd 46 66 HPGCDKAFVRNHDLIRHKKSH 61.4 24.8 17.4 2.19

1zgm A 64 84 DRERNFAISQXPAIAIYLGER 34.8 17.8 13.3 2.07

1zgm B 64 84 DRERNFAISQXPAIAIYLGER 36.3 18.4 14.0 2.10

1znf 3 23 CGLCERSFVEKSALSRHQRVH 47.5 16.7 10.4 0.65

1zr9 A 45 65 CLACARYFIDSTNLKTHFRSK 32.3 16.6 13.3 1.38

1zu1 A 36 56 CKVCSAVLISESQKLAHYQSR 41.1 19.3 15.0 1.76

1zu1 A 97 117 CPVCNMTFSSPVVAESHYIGK 41.1 18.4 14.1 1.35

2ab3 A 7 27 FENCGRSFNDRRKLNRHKKIH 38.2 12.7 9.6 2.19

2ab7 A 7 27 FENCGRSFNDRRKLNRHKKIH 68.8 25.9 17.7 2.23

2abq A 186 206 SELVSKPIASIEDAIPHVQRL 72.6 26.0 18.4 2.46

2adr 106 126 CEVCTRAFARQEHLKRHYRSH 21.4 12.0 9.6 0.59

2adr 134 154 CGLCNRAFTRRDLLIRHAQKI 30.7 13.5 10.3 0.89

2ajp A 155 175 ELLSGRKIHSQEEALRVMDML 79.7 25.2 16.4 2.26

2ajp B 155 175 ELLSGRKIHSQEEALRVMDML 77.0 26.9 18.9 2.33

125

PDB file Chain First Last Amino acid sequence MaxD RmsD AvgD CαRmsD

2cot A 21 41 CDECGKSFSHSSDLSKHRRTH 16.1 8.1 6.2 0.48

2cot A 49 69 CDECGKAFIQRSHLIGHHRVH 27.4 11.9 9.3 0.67

2cs0 A 76 96 IPGEKVAHTSLDALVTFHQQK 83.3 35.1 23.7 1.93

2cse W 183 203 CHVCSAVLFSPLDLDAHVASH 17.5 10.6 9.2 0.65

2csh A 40 60 CGVCGKKFKMKHHLVGHMKIH 25.7 12.8 10.2 0.90

2csh A 68 88 CNICAKRFMWRDSFHRHVTSC 27.3 12.8 10.3 0.97

2ct1 A 18 38 CYICHARFTQSGTMKMHILQK 22.0 11.6 9.5 0.83

2ct1 A 48 68 CPHCDTVIARKSDLGVHLRKQ 48.6 19.4 14.5 1.09

2ctd A 65 85 CHHCGKQLRSLAGMKYHVMAN 23.2 11.1 8.5 0.87

2drp A 113 133 CKVCSRVYTHISNFCRHYVTS 22.4 10.2 8.6 0.87

2drp A 143 163 CPFCFKEFTRKDNMTAHVKII 35.5 13.1 10.4 0.91

2drp D 113 133 CKVCSRVYTHISNFCRHYVTS 22.3 9.5 7.5 0.84

2drp D 143 163 CPFCFKEFTRKDNMTAHVKII 36.8 11.2 7.4 0.99

2gli A 174 194 FEGCRKSYSRLENLKTHLRSH 86.9 27.6 17.1 2.10

2gli A 235 255 LPGCTKRYTDPSSLRKHVKTV 64.5 26.7 19.6 2.17

2hmx 88 108 CVHQRIDVKDTKEALDKIEEE 49.5 23.1 17.1 1.72

3znf 5 25 CSYCNFSFKTKGNLTKHMKSK 47.0 22.2 16.9 1.35

4znf 5 25 CSYCNFSFKTKGNLTKHMKSK 52.4 24.5 17.9 1.28

5znf 5 25 CQYCEYRSADSSNLKTHIKTK 37.1 19.1 15.0 0.96

7pck A 15 35 KKTHRKQYNNKVDEISRRLIW 50.9 16.9 12.0 2.14

7pck B 15 35 KKTHRKQYNNKVDEISRRLIW 51.3 16.8 11.9 2.12

7pck C 15 35 KKTHRKQYNNKVDEISRRLIW 50.8 17.1 12.6 2.16

7pck D 15 35 KKTHRKQYNNKVDEISRRLIW 50.6 18.5 13.8 2.11

7znf 5 25 CQYCEKRFADSSNLKTHIKTK 41.1 19.4 14.2 0.95

126 APPENDIX A. LIST OF PAST QUERY RESULTS

Appendix B

List of PROSITE Entries

127

128 APPENDIX B. LIST OF PROSITE ENTRIES

1A1F A 105- 134

135- 162

163- 186

1A1G A 105- 134

135- 162

163- 186

1A1H A 105- 134

135- 162

163- 187

1A1I A 105- 134

135- 162

163- 187

1A1J A 105- 134

135- 162

163- 186

1A1K A 105- 134

135- 162

163- 187

1A1L A 105- 134

135- 162

163- 187

1AAY A 105- 134

135- 162

163- 187

1ARD 104- 130

1ARE 104- 130

1ARF 104- 130

1BBO 2- 29

30- 57

1BHI 7- 31

1F2I G 1105-1134

1135-1158

H 2105-2134

2135-2158

I 3105-3134

3135-3158

J 4105-4134

4135-4158

K 5105-5134

5135-5158

L 6105-6134

6135-6158

1FV5 A 9- 36

1G2D C 105- 134

135- 162

163- 189

1G2D F 205-234

235-262

263-288

1G2F C 105-134

135-162

163-189

F 205-234

235-262

263-288

1JK1 A 105-134

135-162

163-187

1JK2 A 105-134

135-162

163-187

1LLM C 104-131

132-155

D 204-231

232-255

1LU6 A 322-351

352-381

382-409

413-442

1NCS 32- 60

1NJQ A 6- 33

1P47 A 105-134

135-162

163-188

B 105-134

135-162

163-186

1P7A A 12- 34

1PAA 132-159

1SP1 3- 29

1SP2 3- 31

1SRK A 8- 35

1TF3 A 13- 42

43- 72

73-101

1TF6 A 13- 42

43- 72

73- 98

105-134

135-161

1TF6 D 13- 42

43- 72

73- 98

105-134

135-161

1UBD C 296-320

325-352

353-382

383-408

1UN6 B 105-134

135-161

C 105-134

135-161

D 135-161

1VA1 A 537-565

1VA2 A 567-595

1VA3 A 597-623

1WJP A 70- 98

1Y0J B 9- 36

1ZAA C 5- 34

35- 62

63- 87

1ZFD 42- 70

1ZNF 1- 25

1ZNM 2- 28

2ADR 104-131

132-160

2DRP A 111-139

141-165

D 111-139

141-166

2GLI A 104-136

137-169

170-199

200-230

231-257

3ZNF 3- 30

4ZNF 3- 30

5ZNF 3- 30

7ZNF 3- 30

Table B.1: Zinc �ngers that match the PROSITE domain pro�le (matrix) PS50157.

Appendix C

List of SCOP Entries

PDB file Chain First Last

1a1f A 103 131

1a1f A 132 159

1a1f A 160 186

1a1g A 103 131

1a1g A 132 159

1a1g A 160 186

1a1h A 103 131

1a1h A 132 159

1a1h A 160 187

1a1i A 103 131

1a1i A 132 159

1a1i A 160 187

1a1j A 103 131

1a1j A 132 159

1a1j A 160 186

1a1k A 103 131

1a1k A 132 159

1a1k A 160 187

1a1l A 103 131

1a1l A 132 159

1a1l A 160 187

1aay A 103 131

1aay A 132 159

1aay A 160 187

PDB file Chain First Last

1ard

1are

1arf

1bbo 1 28

1bbo 29 57

1bhi

1f2i G 1093 1131

1f2i G 1132 1158

1f2i H 2093 2131

1f2i H 2132 2158

1f2i I 3093 3131

1f2i I 3132 3158

1f2i J 4093 4131

1f2i J 4132 4158

1f2i K 5096 5131

1f2i K 5132 5158

1f2i L 6093 6131

1f2i L 6132 6158

1jk1 A 103 131

1jk1 A 132 159

1jk1 A 160 187

1jk2 A 103 131

1jk2 A 132 159

1jk2 A 160 187

Table C.1: SCOP entries of the superfamily 'C2H2 and C2HC zinc �ngers'.

129

130 APPENDIX C. LIST OF SCOP ENTRIES

PDB file Chain First Last

1klr A

1kls A

1llm C 101 128

1llm C 129 156

1llm D 201 228

1llm D 229 256

1ncs

1p47 A 102 131

1p47 A 132 159

1p47 A 160 188

1p47 B 103 131

1p47 B 132 159

1p47 B 160 186

1p7a A

1paa

1rmd 87 116

1sp1

1sp2

1srk A

1tf3 A 1 40

1tf3 A 41 70

1tf3 A 71 101

1tf6 A 10 40

1tf6 A 41 70

1tf6 A 71 100

1tf6 A 101 131

1tf6 A 132 160

1tf6 A 161 188

1tf6 D 7 40

1tf6 D 41 70

1tf6 D 71 100

1tf6 D 101 131

1tf6 D 132 160

1tf6 D 161 188

1ubd C 295 322

1ubd C 323 350

1ubd C 351 380

1ubd C 381 408

PDB file Chain First Last

1un6 B 104 131

1un6 B 132 160

1un6 B 161 190

1un6 C 104 131

1un6 C 132 160

1un6 C 161 190

1un6 D 133 160

1un6 D 161 190

1yui A

1yuj A

1zaa C 3 31

1zaa C 32 59

1zaa C 60 87

1zfd

1znf

2adr 102 130

2adr 131 161

2drp A 103 139

2drp A 140 165

2drp D 102 139

2drp D 140 166

2gli A 103 134

2gli A 135 167

2gli A 168 197

2gli A 198 228

2gli A 229 257

3znf

4znf

5znf

7znf

1njq A

1m36 A

1fv5 A

1fu9 A

1uw2 A

1jn7 A

Table C.2: SCOP entries of the superfamily 'C2H2 and C2HC zinc �ngers' (continued).

Appendix D

List of CATH Entries

131

132 APPENDIX D. LIST OF CATH ENTRIES

S N I D

1 1 1 1llmC1, 1llmD1, 1a1hA2, 1a1iA2, 1aayA2, 1jk2A2, 1a1gA2, 1a1kA2,

1jk1A2, 1a1jA2, 1a1fA2, 1zaaC2, 1p47A2, 1p47B2, 1a1lA2

2 1f2iG2, 1f2iH2, 1f2iI2, 1f2iJ2, 1f2iK2, 1f2iL2

2 1 1a1hA3, 1a1iA3, 1aayA3, 1a1gA3, 1a1kA3, 1jk1A3, 1a1jA3, 1a1fA3,

1zaaC3, 1p47A3, 1p47B3, 1a1lA3

3 1 1g2fC2, 1g2fF2

4 1 1g2fC3, 1g2fF3

2 1g2dC3, 1g2dF3

5 1 1g2dC2, 1g2dF2

2 1 1 1a1hA1

2 1 1a1iA1, 1a1kA1, 1a1jA1

2 1jk2A1, 1jk1A1

3 1 1aayA1, 1zaaC1, 1p47A1, 1p47B1, 1a1lA1, 1f2iG1, 1f2iH1, 1f2iI1, 1f2iJ1,

1f2iK1, 1f2iL1

4 1 1a1gA1, 1a1fA1

5 1 1g2fC1, 1g2fF1, 1g2dC1, 1g2dF1

6 1 1ubdC4

3 1 1 1rmd02

4 1 1 1meyC1, 1meyF1

2 1meyC2, 1meyF2

2 1 1meyC3, 1meyF3, 1meyG0

3 1 1ubdC2

4 1 1bbo01

5 1 1 1ubdC1

2 1 2gliA5

6 1 1 1ubdC3

2 1 2gliA3

3 1 1tf3A2

7 1 1 2gliA1

8 1 1 2gliA2

9 1 1 2gliA4

10 1 1 2drpA1, 2drpD1

11 1 1 2drpA2, 2drpD2

2 1 2adr02

12 1 1 1b69A0, 1tn9A0

2 1bb800, 2bb800

13 1 1 1bbo02

14 1 1 1ncs00

15 1 1 1tf3A1

16 1 1 1tf3A3

17 1 1 1yuiA0, 1yujA0

18 1 1 2adr01

Table D.1: Classi�cation of Zinc Fingers in the CATH hierarchy.

Appendix E

List of Abbreviations / Acronyms

AFP Aligned Fragment Pair

ASCII American Standard Code for Information Interchange

BLAST Basic Local Alignment Search Tool

DFA Deterministic Finite Automaton

DFS Depth-First Search

DNA DeoxyriboNucleic Acid

GST Generalized Su�x Tree

HGP Human Genome Project

NMR Nuclear Magnetic Resonance

PAST Polypeptide Angles Su�x Tree

PDB Protein Data Bank

RCSB Research Collaboratory for Structural Bioinformatics

RMSD Root-Mean-Square Deviation or Root-Mean-Square Distance

RNA RiboNucleic Acid

SHSP Structural High Scoring Pairs

SSE Secondary Structure Element

SVD Singular Value Decomposition

133

134 APPENDIX E. LIST OF ABBREVIATIONS / ACRONYMS

Bibliography

[3DP02] Proceedings of the 1st International Symposium on 3D Data Processing, Vi-
sualization and Transmission (3DPVT'02), June 2002. 142

[AD03] Russ B. Altman and Jonathan M. Dugan. De�ning bioinformatics and struc-
tural bioinformatics. In Bourne and Weissig [BW03], pages 3�14. 4

[AF96] Nickolai N. Alexandrov and Daniel Fischer. Analysis of topological and non-
topological structural similarities in the PDB: New examples with old struc-
tures. Proteins: Structure, Function, and Bioinformatics, 25(3):354�365, July
1996. 115

[AFT03] Zeyar Aung, Wei Fu, and Kian-Lee Tan. An e�cient index-based protein
structure database searching method. In DASFAA 2003 [DAS03], pages 311�
318. 38

[AGM+90] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. Journal of Molecular
Biology, 215(3):403�410, October 1990. 42

[AHB87] K. S. Arun, Thomas S. Huang, and Steven D. Blostein. Least-squares �tting
of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(5):698�700, September 1987. 70

[AMM44] Oswald T. Avery, Colin M. MacLeod, and Maclyn McCarty. Studies on the
chemical nature of the substance inducing transformation of pneumococcal
types: Induction of transformation by a desoxyribonucleic acid fraction iso-
lated from pneumococcus type III. The Journal of Experimental Medicine,
79(2):137�158, February 1944. 22

[AN95] Arne Andersson and Stefan Nilsson. E�cient implementation of su�x trees.
Software: Practice and Experience, 25(2):129�141, February 1995. 36, 54

[AOI97] Tatsuya Akutsu, Kentaro Onizuka, and Masato Ishikawa. Rapid protein frag-
ment search using hash functions based on the Fourier transform. Computer
Applications in the Biosciences, 13(4):357�364, August 1997. 40

135

136 BIBLIOGRAPHY

[ASPM97] Enrique E. Abola, Joel L. Sussman, Jaime Prilusky, and Nancy O. Manning.
Protein data bank archives of three-dimensional macromolecular structures.
In Carter and Sweet [CS97], pages 546�556. 27

[AT04] Zeyar Aung and Kian-Lee Tan. Rapid 3D protein structure database searching
using information retrieval techniques. Bioinformatics, 20(7):1045�1052, May
2004. 38

[AT05] Zeyar Aung and Kian-Lee Tan. Automatic 3d protein structure classi�cation
without structural alignment. Journal of Computational Biology, 12(9):1221�
1241, November 2005. 115

[ATG92] Nickolai N. Alexandrov, Katsutoshi Takahashi, and Nobuhiro G	o. Com-
mon spatial arrangements of backbone fragments in homologous and non-
homologous proteins. Journal of Molecular Biology, 225(1):5�9, May 1992.
106

[AWCJ05] Robert J. Anderson, Zhiping Weng, Robert K. Campbell, and Xuliang Jiang.
Main-chain conformational tendencies of amino acids. Proteins: Structure,
Function, and Bioinformatics, 60(4):679�689, September 2005. 57

[BB03] Stephen K. Burley and Je�rey B. Bonanno. Structural genomics. In Bourne
and Weissig [BW03], pages 591�612. 4

[BBM+97] Philip E. Bourne, Helen M. Berman, Brian McMahon, Keith D. Watenpaugh,
John D. Westbrook, and Paula M. D. Fitzgerald. Macromolecular crystallo-
graphic information �le. In Carter and Sweet [CS97], pages 571�590. 27

[BC01] Somenath Biswas and Samarjit Chakraborty. Fast algorithms for determining
protein structure similarity. In HiPC 2001 [HiP01]. 71

[BCHM96] Steven E. Brenner, Cyrus Chothia, Tim J. P. Hubbard, and Alexey G. Murzin.
Understanding protein structure: Using Scop for fold interpretation. In Doolit-
tle [Doo96], pages 635�643. 113

[BCK+04] A. Bhattacharya, Tolga Can, Tamer Kahveci, Ambuj K. Singh, and Yuan-Fang
Wang. ProGreSS: Simultaneous searching of protein databases by sequence
and structure. In PSB 2004 [PSB04], pages 264�275. 38

[BEH89] Anselm Blumer, Andrzej Ehrenfeucht, and David Haussler. Average sizes of
su�x trees and DAWGs. Discrete Applied Mathematics, 24(1):37�45, 1989.
81

[BFM97] Siegfried Böhm, Dmitrij Frishman, and Hans-Werner Mewes. Variations of
the C2H2 zinc �nger motif in the yeast genome and classi�cation of yeast zinc
�nger proteins. Nucleic Acids Research, 25(12):2464�2469, June 1997. 90

BIBLIOGRAPHY 137

[BG96] Peer Bork and Toby J. Gibson. Applying motif and pro�le searches. In
Doolittle [Doo96], pages 162�184. 106

[BGR02] Proceedings of the 3rd International Conference on Bioinformatics of Genome
Regulation and Structure (BGRS'02), volume 3, July 2002. 145

[BIB03] Proceedings of the 3rd IEEE Symposium on Bioinformatics and Bioengineering
(BIBE'03), March 2003. 139, 140

[BJVU98] Alvis Br	azma, Inge Jonassen, Jaak Vilo, and Esko Ukkonen. Pattern discovery
in biosequences. In ICGI 1998 [ICG98], pages 257�270. 106

[BKB02] Phil Bradley, Peter S. Kim, and Bonnie Berger. Trilogy: Discovery of
sequence-structure patterns across diverse proteins. In RECOMB 2002
[REC02], pages 77�88. 106

[BOB+92] Helen M. Berman, Wilma K. Olson, David L. Beveridge, John D. Westbrook,
Anke Gelbin, Tamas Demeny, Shu-Hsin Hsieh, Annankoil R. Srinivasan, and
Bohdan Schneider. The nucleic acid database: A comprehensive relational
database of three-dimensional structures of nucleic acids. Biophysical Journal,
63(3):751�759, September 1992. 27

[BRCR94] Paul Bieganski, John Riedl, John V. Carlis, and Ernest F. Retzel. Generalized
su�x trees for biological sequence data: Applications and implementation. In
HICSS 1994 [HIC94], pages 35�44. 50

[Brü03] Rafael Brüschweiler. E�cient RMSD measures for the comparison of two
molecular ensembles. Proteins: Structure, Function, and Genetics, 50(1):26�
34, January 2003. 71

[BS03] Philip E. Bourne and Ilya N. Shindyalov. Structure comparison and alignment.
In Bourne and Weissig [BW03], pages 321�337. 40

[BT99] Carl Branden and John Tooze. Introduction to Protein Structure. Garland
Publishing, New York, second edition, 1999. 20

[BT03a] Jonathan A. Barker and Janet M. Thornton. An algorithm for constraint-
based structural template matching: application to 3d templates with statis-
tical analysis. Bioinformatics, 19(13):1644�1649, September 2003. 38

[BT03b] Arno Buchner and Hanjo Täubig. A fast method for motif detection and
searching in a protein structure database. Technical Report TUM-I0314, Inst.
f. Informatik, TU München, September 2003. 38

[BTG03] Arno Buchner, Hanjo Täubig, and Jan Griebsch. A fast method for motif de-
tection and searching in a protein structure database. In GCB 2003 [GCB03],
pages 186�188. 38

138 BIBLIOGRAPHY

[BW03] Philip E. Bourne and Helge Weissig, editors. Structural Bioinformatics, vol-
ume 44 of Methods of Biochemical Analysis. Wiley-Liss, 2003. 135, 136, 137,
138, 150, 151, 153, 155, 157, 158

[BWF+00] Helen M. Berman, John D. Westbrook, Zukang Feng, Gary L. Gilliland, T. N.
Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein
data bank. Nucleic Acids Research, 28(1):235�242, January 2000. 27

[BWF+03] Helen M. Berman, John D. Westbrook, Zukang Feng, Lisa Iype, Bohdan
Schneider, and Christine Zardecki. The nucleic acid database. In Bourne
and Weissig [BW03], pages 199�216. 27

[BY99] Gill Bejerano and Golan Yona. Modeling protein families using probabilistic
su�x trees. In RECOMB 1999 [REC99], pages 15�24. 106

[BYG99] Ricardo Baeza-Yates and Gaston H. Gonnet. A fast algorithm on average for
all-against-all sequence matching. In SPIRE 1999 [SPI99], pages 16�23. 115

[CB99] Samarjit Chakraborty and Somenath Biswas. Approximation algorithms for
3-d common substructure identi�cation in drug and protein molecules. In
WADS 1999 [WAD99], pages 253�264. 71

[CBP05] Mathilde Carpentier, Sophie Brouillet, and Joël Pothier. YAKUSA: A fast
structural database scanning method. Proteins: Structure, Function, and
Bioinformatics, 61(1):137�151, October 2005. 38, 40

[CCC+04] Darby Tien-Hau Chang, Chien-Yu Chen, Wen-Chin Chung, Yen-Jen Oyang,
Hsueh-Fen Juan, and Hsuan-Cheng Huang. ProteMiner-SSM: a web server
for e�cient analysis of similar protein tertiary substructures. Nucleic Acids
Research, 32(Web Server Issue):W76�W82, July 2004. 38

[CD03] Adrian A. Canutescu and Roland L. Dunbrack, Jr. Cyclic coordinate descent:
A robotics algorithm for protein loop closure. Protein Science, 12(5):963�972,
May 2003. 100

[CFK+05] Brian Y. Chen, Viacheslav Y. Fofanov, David M. Kristensen, Marek Kimmel,
Olivier Lichtarge, and Lydia E. Kavraki. Algorithms for structural comparison
and statistical analysis of 3d protein motifs. In PSB 2005 [PSB05], pages 334�
345. 40

[CGZ04] Matteo Comin, Concettina Guerra, and Giuseppe Zanotti. PROuST: A com-
parison method of three-dimensional structures of proteins using indexing
techniques. Journal of Computational Biology, 11(6):1061�1072, December
2004. 38

BIBLIOGRAPHY 139

[CHKK99] L. Paul Chew, Dan Huttenlocher, Klara Kedem, and Jon Kleinberg. Fast
detection of common geometric substructure in proteins. In RECOMB 1999
[REC99], pages 104�113. 71, 106

[Cho84] Cyrus Chothia. Principles that determine the structure of proteins. Annual
Review of Biochemistry, 53:537�572, July 1984. 16

[CHTY03] Chem-Hooi Chionh, Zhiyong Huang, Kian-Lee Tan, and Zhen Yao. Augment-
ing SSEs with structural properties for rapid protein structure comparison. In
BIBE 2003 [BIB03], pages 341�350. 40

[CIB04] IEEE Computational Intelligence Society. Proceedings of the IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB'04), October 2004. 155

[ÇKS03a] Orhan Çamo§lu, Tamer Kahveci, and Ambuj K. Singh. PSI: indexing protein
structures for fast similarity search. Bioinformatics, 19(Suppl. 1):i81�i83, July
2003. 38

[ÇKS03b] Orhan Çamo§lu, Tamer Kahveci, and Ambuj K. Singh. Towards index-based
similarity search for protein structure databases. In CSB 2003 [CSB03], pages
148�158. 38

[CL86] Cyrus Chothia and Arthur M. Lesk. The relation between the divergence of
sequence and structure in proteins. The EMBO Journal, 5(4):823�826, April
1986. 71

[CL02] Alberto Caprara and Giuseppe Lancia. Structural alignment of large-size
proteins via lagrangian relaxation. In RECOMB 2002 [REC02], pages 100�
108. 40

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli� Stein.
Introduction to Algorithms. MIT Press, second edition, 2001. 30

[Cob95] Archie L. Cobbs. Fast approximate matching using su�x trees. In CPM 1995
[CPM95], pages 41�54. 42

[CP01] Oliviero Carugo and Sándor Pongor. A normalized root-mean-square dis-
tance for comparing protein three-dimensional structures. Protein Science,
10(7):1470�1473, July 2001. 70

[CP02] Oliviero Carugo and Sándor Pongor. Protein fold similarity estimated by
a probabilistic approach based on Cα-Cα distance comparison. Journal of
Molecular Biology, 315(4):887�898, January 2002. 38, 70

140 BIBLIOGRAPHY

[CP03] Matt Coatney and Srinivasan Parthasarathy. MotifMiner: A general toolkit
for e�ciently identifying common substructures in molecules. In BIBE 2003
[BIB03], pages 336�340. 106

[CPM92] Proceedings of the 3rd Symposium on Combinatorial Pattern Matching
(CPM'92), volume 644 of Lecture Notes in Computer Science. Springer,
April/May 1992. 145

[CPM93] Proceedings of the 4th Symposium on Combinatorial Pattern Matching
(CPM'93), volume 684 of Lecture Notes in Computer Science. Springer, June
1993. 156

[CPM95] Proceedings of the 6th Symposium on Combinatorial Pattern Matching
(CPM'95), volume 937 of Lecture Notes in Computer Science. Springer, July
1995. 139

[CPM04] Proceedings of the 15th Symposium on Combinatorial Pattern Matching
(CPM'04), volume 3109 of Lecture Notes in Computer Science. Springer, July
2004. 149

[Cre93] Thomas E. Creighton. Proteins: Structures and Molecular Properties. W. H.
Freeman and Company, second edition, 1993. 16, 20

[Cri58] Francis H. Crick. On protein synthesis. In Symp. of the Society for Experimen-
tal Biology XII, The Biological Replication of Macromolecules, pages 138�163,
1958. 22

[Cri70] Francis H. Crick. Molecular structure of nucleic acids: A structure for de-
oxyribose nucleic acid. Nature, 227(5258):561�563, August 1970. 22

[CS97] Charles W. Carter, Jr. and Robert M. Sweet, editors. Macromolecular Crys-
tallography, volume 277B of Methods in Enzymology. Academic Press, 1997.
136, 142, 146, 147

[CSB03] IEEE Computer Society. Proceedings of the IEEE Computational Systems
Bioinformatics Conference (CSB'03), August 2003. 139

[CSB05] IEEE Computer Society. Proceedings of the IEEE Computational Systems
Bioinformatics Conference (CSB'05), August 2005. 143

[CSD04] Evangelos A. Coutsias, Chaok Seok, and Ken A. Dill. Using quaternions
to calculate RMSD. Journal of Computational Chemistry, 25(15):1849�1857,
November 2004. 71

[DAS03] IEEE. Proceedings of the 8th International Conference on Database Systems
for Advanced Applications (DASFAA'03), March 2003. 135

BIBLIOGRAPHY 141

[DC93] Nigel J. Darby and Thomas E. Creighton. Protein Structure. In Focus. Oxford
University Press, 1993. 20

[DEX03] Proceedings of the 14th International Conference on Database and Expert Sys-
tems Applications (DEXA'03), volume 2736 of Lecture Notes in Computer
Science. Springer, September 2003. 153

[DEX04] Proceedings of the 15th International Conference on Database and Expert Sys-
tems Applications (DEXA'03), volume 3180 of Lecture Notes in Computer
Science. Springer, August/September 2004. 152

[DFJZK94] Ding Da-Fu, Qian Jiang, and Feng Zu-Kang. A di�erential geometric treat-
ment of protein structure comparison. Bulletin of Mathematical Biology,
56(5):923�943, September 1994. 73

[Dia66] R. Diamond. A mathematical model-building procedure for proteins. Acta
Crystallographica, 21(2):253�266, August 1966. 70

[Dia76] R. Diamond. On the comparison of conformations using linear and quadratic
transformations. Acta Crystallographica, A32(1):1�10, January 1976. 71

[Dia88] R. Diamond. A note on the rotational superposition problem. Acta Crystal-
lographica, A44(2):211�216, March 1988. 70

[dlB59] Rene de la Briandais. File searching using variable length keys. In Proceedings
of the Western Joint Computer Conference, pages 295�298, March 1959. 32

[dlCML97] Xavier F. de la Cruz, Michael W. Mahoney, and Byungkook Lee. Discrete
representations of the protein Cα chain. Folding and Design, 2(4):223�234,
August 1997. 78

[DM97] Bassil I. Dahiyat and Stephen L. Mayo. De novo protein design: Fully auto-
mated sequence selection. Science, 278(5335):82�87, October 1997. 90

[Doo96] Russell F. Doolittle, editor. Computer Methods for Macromolecular Sequence
Analysis, volume 266 of Methods in Enzymology. Academic Press, 1996. 136,
137

[DSM97] Bassil I. Dahiyat, Catherine A. Sarisky, and Stephen L. Mayo. De novo protein
design: towards fully automated sequence selection. Journal of Molecular
Biology, 273(4):789�796, November 1997. 90

[Eis03] David Eisenberg. The discovery of the α-helix and β-sheet, the principal struc-
tural features of proteins. Proceedings of the National Academy of Sciences of
the USA, 100(20):11207�11210, September 2003. 8

142 BIBLIOGRAPHY

[EJT99] Ingvar Eidhammer, Inge Jonassen, and William R. Taylor. Structure compari-
son and structure patterns. Technical Report 174, Department of Informatics,
University of Bergen, Bergen, Norway, July 1999. 106

[EPSV98] Vincent Escalier, Joël Pothier, Henry Soldano, and Alain Viari. Pairwise and
multiple identi�cation of three-dimensional common substructures in proteins.
Journal of Computational Biology, 5(1):41�56, 1998. 106

[Erd05] Michael A. Erdmann. Protein similarity from knot theory: Geometric convo-
lution and line weavings. Journal of Computational Biology, 12(6):609�637,
July 2005. 106

[Ern03] Jens Ernst. Similarity-Based Clustering Algorithms for Gene Expression Pro-
�les. PhD thesis, Fakultät für Informatik, Technische Universität München,
Garching / München, Germany, 2003. 116

[FAK02] Michel N. Fodje and Salam Al-Karadaghi. Occurrence, conformational fea-
tures and amino acid propensities for the π-helix. Protein Engineering,
15(5):353�358, May 2002. 16

[FH77] Dino R. Ferro and Jan Hermans. A di�erent best rigid-body molecular �t
routine. Acta Crystallographica, A33:345�347, 1977. 70

[Fin97] Barry C. Finzel. LORE: Exploiting database of known structures. In Carter
and Sweet [CS97], pages 230�242. 40

[Fre60] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490�499,
September 1960. 32

[GCB03] Proceedings of the German Conference on Bioinformatics (GCB'03), October
2003. 137, 157

[GCB04] Proceedings of the German Conference on Bioinformatics (GCB'04), volume
P-53 of Lecture Notes in Informatics. Köllen Verlag, October 2004. 156

[GG89] Zvi Galil and Ra�aele Giancarlo. Speeding up dynamic programming with
applications to molecular biology. Theoretical Computer Science, 64(1):107�
118, April 1989. 42

[GK97] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreight and
Weiner: A unifying view of linear-time su�x tree construction. Algorithmica,
19(3):331�353, November 1997. 36, 43

[GLZ02] Concettina Guerra, Stefano Lonardi, and Giuseppe Zanotti. Analysis of
secondary structure elements of proteins using indexing techniques. In
3DPVT 2002 [3DP02], pages 812�823. 40

BIBLIOGRAPHY 143

[GM87] Paul R. Gerber and Klaus Müller. Superimposing several sets of atomic coor-
dinates. Acta Crystallographica, A43(3):426�428, May 1987. 107

[GMB96] Jean-Francois Gibrat, Thomas Madej, and Stephen H. Bryant. Surprising
similarities in structure comparison. Current Opinion in Structural Biology,
6(3):377�385, June 1996. 37, 38, 40

[God96] Adam Godzik. The structural alignment between two proteins: Is there a
unique answer? Protein Science, 5(7):1325�1338, July 1996. 40

[Got82] Osamu Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705�708, December 1982. 42

[GPK00] Kunchur Guruprasad, Maheshuni S. Prasad, and Gundu R. Kumar. Database
of structural motifs in proteins. Bioinformatics, 16(4):372�375, April 2000. 27

[Gre85] Jonathan Greer. Computer skeletonization and automatic electron density
map analysis. In Wycko� et al. [WHT85], pages 206�224. 100

[GSC+96] Anke Gelbin, Bohdan Schneider, Lester Clowney, Shu-Hsin Hsieh, Wilma K.
Olson, and Helen M. Berman. Geometric parameters in nucleic acids: Sugar
and phosphate constituents. Journal of the American Chemical Society,
118(3):519�529, January 1996. 23

[Gus97] Dan Gus�eld. Algorithms on Strings, Trees, and Sequences � Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997. 36, 50

[GVP05] Zoltán Gáspári, Kristian Vlahovicek, and Sándor Pongor. E�cient recog-
nition of folds in protein 3d structures by the improved PRIDE algorithm.
Bioinformatics, 21(15):3322�3323, August 2005. 38

[Gwe68] Gernot Gwehenberger. Anwendung einer binären Verweiskettenmethode beim
Aufbau von Listen (Use of a binary tree structure for processing �les). Elek-
tronische Rechenanlagen, 10(5):223�226, October 1968. 33

[GWNT99] David R. Gilbert, David R. Westhead, Nozomi Nagano, and Janet M. Thorn-
ton. Motif-based searching in TOPS protein topology databases. Bioinfor-
matics, 15(4):317�326, April 1999. 38

[GWT98] David R. Gilbert, David R. Westhead, and Janet M. Thornton. A constraint-
based system for protein motif-searching, pattern discovery and structure com-
parison. In Proc. of the ERCIM/COMPULOG Workshop on Constraints,
September 1998. 40

[GZ05] Feng Gao and Mohammed J. Zaki. PSIST: Indexing protein structures using
su�x trees. In CSB 2005 [CSB05], pages 212�222. 38

144 BIBLIOGRAPHY

[HAI02] Ela Hunt, Malcolm P. Atkinson, and Robert W. Irving. Database indexing for
large DNA and protein sequence collections. The VLDB Journal, 11(3):256�
271, November 2002. 42

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. The Bell
System Technical Journal, 29(2):147�160, April 1950. 67

[HBW+05] Jun Huan, Deepak Bandyopadhyay, Wei Wang, Jack Snoeyink, Jan Prins, and
Alexander Tropsha. Comparing graph representations of protein structure for
mining family-speci�c residue-based packing motifs. Journal of Computational
Biology, 12(6):657�671, July 2005. 106

[HC52] Alfred D. Hershey and Martha Chase. Independent functions of viral pro-
tein and nucleic acid in growth of bacteriophage. The Journal of General
Physiology, 36(1):39�56, September 1952. 22

[HIC94] IEEE. Proceedings of the 27th Annual Hawaii International Conference on
System Sciences (HICSS'94), volume V (Biotechnology Computing), 1994.
137, 146

[HiP01] Proceedings of the Workshop on Bioinformatics and Computational Biol-
ogy at the 8th International Conference on High Performance Computing
(HiPC 2001), December 2001. 136, 149

[HLS+95] Doug L. Ho�man, S. Laiter, Raj K. Singh, I. I. Vaisman, and Alexander
Tropsha. Rapid protein structure classi�cation using one-dimensional struc-
ture pro�les on the BioSCAN parallel computer. Computer Applications in
the Biosciences, 11(6):675�679, December 1995. 40

[Hof96] Doug L. Ho�man. Comparison of Protein Structures by Transformation into
Dihedral Angle Sequences. PhD thesis, University of North Carolina, Chapel
Hill, NC, USA, 1996. 77

[Hor87a] Berthold K. P. Horn. Closed-form solution of absolute orientation using or-
thonormal matrices. Journal of the Optical Society of America A, 5(7):1127�
1135, May 1987. 70

[Hor87b] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, 4(4):629�642, April
1987. 70

[HS93] Liisa Holm and Chris Sander. Protein structure comparison by alignment of
distance matrices. Journal of Molecular Biology, 233(1):123�138, September
1993. 38, 39

BIBLIOGRAPHY 145

[HS94] Liisa Holm and Chris Sander. Searching protein structure databases has come
of age. Proteins: Structure, Function, and Genetics, 19(3):165�173, July 1994.
37, 38, 39

[HS95] Liisa Holm and Chris Sander. 3-D Lookup: Fast protein structure database
searches at 90% reliability. In ISMB 1995 [ISM95], pages 179�187. 39

[HS96] Liisa Holm and Chris Sander. Mapping the protein universe. Science,
273(5275):595�602, August 1996. 38, 39, 115

[HS97] Liisa Holm and Chris Sander. Dali/FSSP classi�cation of three-dimensional
protein folds. Nucleic Acids Research, 25(1):231�234, January 1997. 39, 115

[HSV97] Rob W. W. Hooft, Chris Sander, and Gerrit Vriend. Objectively judging the
quality of a protein structure from a Ramachandran plot. Computer Applica-
tions in the Biosciences, 13(4):425�430, August 1997. 57

[HT96] E. Gail Hutchinson and Janet M. Thornton. PROMOTIF � a program to
identify and analyze structural motifs in proteins. Protein Science, 5(2):212�
220, February 1996. 100

[Hui92] Lucas Chi Kwong Hui. Color set size problem with applications to string
matching. In CPM 1992 [CPM92], pages 230�243. 50, 106, 110

[ICG98] Proceedings of the 4th International Colloquium on Grammatical Inference
(ICGI'98), Lecture Notes in Arti�cial Intelligence. Springer, July 1998. 137

[IDE03] Proceedings of the 4th International Conference on Intelligent Data Engineer-
ing and Automated Learning (IDEAL'03), volume 2690 of Lecture Notes in
Computer Science. Springer, March 2003. 153

[IDE04] Proceedings of the 5th International Conference on Intelligent Data Engineer-
ing and Automated Learning (IDEAL'03), volume 3177 of Lecture Notes in
Computer Science. Springer, August 2004. 152

[IDP+02] V. A. Ivanisenko, V. A. Debelov, S. S. Pintus, S. V. Nikolaev, D. A. Grig-
orovich, and Nikolay A. Kolchanov. PDBSiteScan: A tool for search for
the best-matching superposition in the database PDBSite. In BGRS 2002
[BGR02], pages 150�153. 40

[IJC03] IEEE. Proceedings of the International Joint Conference on Neural Networks
(IJCNN'03), volume 4, 2003. 151

[IMP+04] Costas S. Iliopoulos, James McHugh, Pierre Peterlongo, Nadia Pisanti, Wo-
jciech Rytter, and Marie-France Sagot. A �rst approach to �nding common
motifs with gaps. In PSC 2004 [PSC04], pages 88�97. 106

146 BIBLIOGRAPHY

[ISM95] Proceedings of the 3rd International Conference on Intelligent Systems for
Molecular Biology (ISMB'95). AAAI Press, July 1995. 145

[ISM97] Proceedings of the 5th International Conference on Intelligent Systems for
Molecular Biology (ISMB'97). AAAI Press, June 1997. 147

[JC85] Joël Janin and Cyrus Chothia. Domains in proteins: De�nitions, location,
and structural principles. In Wycko� et al. [WHT85], pages 420�430. 17

[JD05] Yuting Jia and T. Gregory Dewey. A random polymer model of the statis-
tical signi�cance of structure alignment. Journal of Computational Biology,
12(3):298�313, April 2005. 71

[JHF03] Andrew I. Jewett, Conrad C. Huang, and Thomas E. Ferrin. MINRMS: an ef-
�cient algorithm for determining protein structure similarity using root-mean-
squared-distance. Bioinformatics, 19(5):625�634, March 2003. 40

[JK97] T. Alwyn Jones and Morten Kjeldgaard. Electron-density map interpretation.
In Carter and Sweet [CS97], pages 173�208. 100

[JOE+94] Mark S. Johnson, John P. Overington, Yvonne Edwards, Alex C. W. May, and
Michael A. Rodionov. The comparison of structures and sequences: alignment,
searching and the detection of common folds. In HICSS 1994 [HIC94], pages
296�305. 40

[JSRS05] Kyle L. Jensen, Mark P. Styczynski, Isidore Rigoutsos, and Gregory N.
Stephanopoulos. A generic motif discovery algorithm for sequential data.
Bioinformatics, 2005. 106

[JT86] T. Alwyn Jones and Sören Thirup. Using known substructures in protein
model building and crystallography. The EMBO Journal, 5(4):819�822, April
1986. 100

[Kab76] Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica, A32(5):922�923, September 1976. 70

[Kab78] Wolfgang Kabsch. A discussion of the solution for the best rotation to relate
two sets of vectors. Acta Crystallographica, A34(5):827�828, September 1978.
70

[Kaw03] Takeshi Kawabata. MATRAS: a program for protein 3D structure comparison.
Nucleic Acids Research, 31(13):3367�3369, July 2003. 38

[KBD+58] John C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wycko�, and
D. C. Phillips. A three-dimensional model of the myoglobin molecule obtained
by x-ray analysis. Nature, 181(4610):662�666, March 1958. 8

BIBLIOGRAPHY 147

[KdHN89] Mary E. Karpen, Pieter L. de Haseth, and Kenneth E. Neet. Comparing
short protein substructures by a method based on backbone torsion angles.
Proteins: Structure, Function, and Genetics, 6(2):155�167, 1989. 73

[Kea89] Simon K. Kearsley. On the orthogonal transformation used for structural
comparisons. Acta Crystallographica, A45(2):208�210, February 1989. 70

[KGLK05] Rachel Kolodny, Leonidas Guibas, Michael Levitt, and Patrice Koehl. Inverse
kinematics in biology: The protein loop closure problem. The International
Journal of Robotics Research, 24(2-3):151�163, February/March 2005. 100

[KH04] Eugene Krissinel and Kim Henrick. Secondary-structure matching (SSM),
a new tool for fast protein structure alignment in three dimensions. Acta
Crystallographica, D60(12-1):2256�2268, December 2004. 38

[KJ97] Gerard J. Kleywegt and T. Alwyn Jones. Detecting folding motifs and simi-
larities in protein structures. In Carter and Sweet [CS97], pages 525�545. 38,
39, 106

[KL97] Ina Koch and Thomas Lengauer. Detection of distant structural similarities
in a set of proteins using a fast graph-based method. In ISMB 1997 [ISM97],
pages 167�178. 105

[KL04] Rachel Kolodny and Nathan Linial. Approximate protein structural alignment
in polynomial time. Proceedings of the National Academy of Sciences of the
USA, 101(33):12201�12206, August 2004. 71

[Kle97] Gerard J. Kleywegt. Validation of protein models from Cα coordinates alone.
Journal of Molecular Biology, 273(2):371�376, October 1997. 57

[Kle99] Gerard J. Kleywegt. Recognition of spatial motifs in protein structures. Jour-
nal of Molecular Biology, 285(4):1887�1897, January 1999. 38, 39, 106

[KLW96] Ina Koch, Thomas Lengauer, and Egon Wanke. An algorithm for �nding
maximal common subtopologies in a set of protein structures. Journal of
Computational Biology, 3(2):289�306, 1996. 105

[KMR72] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. Rapid iden-
ti�cation of repeated patterns in strings, trees and arrays. In STOC 1972
[STO72], pages 125�136. 105

[KN00] Takeshi Kawabata and Ken Nishikawa. Protein structure comparison using
the Markov transition model of evolution. Proteins: Structure, Function, and
Genetics, 41(1):108�122, October 2000. 38

[Knu98] Donald E. Knuth. The Art of Computer Programming � Sorting and Search-
ing, volume 3. Addison-Wesley, second edition, 1998. 30, 31

148 BIBLIOGRAPHY

[KP60] William Klyne and Vladimir Prelog. Description of steric relationships across
single bonds. Experientia, 16(12):521�523, December 1960. 55

[KP04] Natalio Krasnogor and David A. Pelta. Measuring the similarity of pro-
tein structures by means of the universal similarity metric. Bioinformatics,
20(7):1015�1021, May 2004. 71

[Kur99] Stefan Kurtz. Reducing the space requirement of su�x trees. Software: Prac-
tice and Experience, 29(13):1149�1171, 1999. 36, 54

[LC05] Sangyoon Lee and Gregory S. Chirikjian. Pose analysis of alpha-carbons in
proteins. The International Journal of Robotics Research, 24(2-3):183�210,
February/March 2005. 57

[LDA+03] Simon C. Lovell, Ian W. Davis, W. Bryan Arendall III, Paul I. W. de Bakker,
J. Michael Word, Michael G. Prisant, Jane S. Richardson, and David C.
Richardson. Structure validation by Cα geometry: φ,ψ and Cβ deviation.
Proteins: Structure, Function, and Genetics, 50(3):437�450, February 2003.
57

[Les79] Arthur M. Lesk. Detection of three-dimensional patterns of atoms in chemical
structures. Communications of the ACM, 22(4):219�224, April 1979. 40

[Lev65] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Doklady Akademii Nauk SSSR, 163(4):845�848, August
1965. 67

[Lev76] Michael Levitt. A simpli�ed representation of protein conformations for rapid
simulation of protein folding. Journal of Molecular Biology, 104(1):59�107,
June 1976. 16, 40, 57, 71, 73

[LG98] Michael Levitt and Mark Gerstein. A uni�ed statistical framework for se-
quence comparison and structure comparison. Proceedings of the National
Academy of Sciences of the USA, 95(11):5913�5920, May 1998. 42

[LKSD00] Peter Lackner, Walter A. Koppensteiner, Manfred J. Sippl, and Francisco S.
Domingues. ProSup: a re�ned tool for protein structure alignment. Protein
Engineering, 13(11):745�752, November 2000. 40

[LNW01] Nathaniel Leibowitz, Ruth Nussinov, and Haim J. Wolfson. MUSTA - a
general, e�cient, automated method for multiple structure alignment and de-
tection of common motifs: Application to proteins. Journal of Computational
Biology, 8(2):93�121, April 2001. 105, 106

[Lot04] Itay Lotan. Algorithms Exploiting the Chain Structure of Proteins. PhD thesis,
Department of Computer Science, Stanford University, Stanford, CA, USA,
2004. 71

BIBLIOGRAPHY 149

[LP85] David J. Lipman and William R. Pearson. Rapid and sensitive protein simi-
larity searches. Science, 227(4693):1435�1441, March 1985. 42

[LP01] Hongyuan Li and Srinivasan Parthasarathy. Deriving multi-level protein struc-
tures through data mining. In HiPC 2001 [HiP01]. 106

[LS04] Itay Lotan and Fabian Schwarzer. Approximation of protein structure for
fast similarity measures. Journal of Computational Biology, 11(2-3):299�317,
March 2004. 71

[LSW84] M. Levine, D. Stuart, and J. Williams. A method for the systematic compar-
ison of the three-dimensional structures of proteins and some results. Acta
Crystallographica, A40(5):600�610, September 1984. 73

[Lu00] Guoguang Lu. TOP: a new method for protein structure comparisons and sim-
ilarity searches. Journal of Applied Crystallography, 33(1):176�183, February
2000. 38

[Maa04] Moritz Maaÿ. Average-case analysis of approximate trie search. In CPM 2004
[CPM04], pages 472�483. 86

[Mac84] Alan L. Mackay. Quaternion transformation of molecular orientation. Acta
Crystallographica, A40(2):165�166, March 1984. 70

[Mar00] Andrew C.R. Martin. The ups and downs of protein topology; rapid com-
parison of protein structure. Protein Engineering, 13(12):829�837, December
2000. 38

[MBHC95] Alexey G. Murzin, Steven E. Brenner, Tim J. P. Hubbard, and Cyrus Chothia.
SCOP: A structural classi�cation of proteins database for the investigation of
sequences and structures. Journal of Molecular Biology, 247(4):536�540, April
1995. 113

[McC76] Edward M. McCreight. A space-economical su�x tree construction algorithm.
Journal of the ACM, 23(2):262�272, April 1976. 36

[McL72] A. D. McLachlan. A mathematical procedure for superimposing atomic coor-
dinates of proteins. Acta Crystallographica, A28(6):656�657, November 1972.
70

[MK02] Dennis Madsen and Gerard J. Kleywegt. Interactive motiv and fold recogni-
tion in protein structures. Journal of Applied Crystallography, 35(1):137�139,
February 2002. 38, 39

[Mor68] Donald R. Morrison. PATRICIA � practical algorithm to retrieve information
coded in alphanumeric. Journal of the ACM, 15(4):514�534, October 1968.
33

150 BIBLIOGRAPHY

[MR85] Brian W. Matthews and Michael G. Rossmann. Comparison of protein struc-
tures. In Wycko� et al. [WHT85], pages 397�420. 40

[MS00] Laurent Marsan and Marie-France Sagot. Algorithms for extracting structured
motifs using a su�x tree with an application to promoter and regulatory
site consensus identi�cation. Journal of Computational Biology, 7(3):345�362,
August 2000. 106

[MTGW04] Ioannis Michalopoulos, Gilleain M. Torrance, David R. Gilbert, and David R.
Westhead. TOPS: An enhanced database of protein structural topology. Nu-
cleic Acids Research, 32(Database Issue):D251�D254, January 2004. 38

[MTT04] Kevin B. Murray, William R. Taylor, and Janet M. Thornton. Toward the
detection and validation of repeats in protein structure. Proteins: Structure,
Function, and Bioinformatics, 57(2):365�380, November 2004. 106

[Mul04] Lisa Mullan. Domains and motifs � proteins in bite-sized chunks. Brie�ngs
in Bioinformatics, 5(1):71�74, March 2004. 106

[NBG+02] Giri Narasimhan, Changsong Bu, Yuan Gao, Xuning Wang, Ning Xu, and
Kalai Mathee. Mining protein sequences for motifs. Journal of Computational
Biology, 9(5):707�720, October 2002. 106

[NBYST01] Gonzalo Navarro, Ricardo Baeza-Yates, Erkki Sutinen, and Jorma Tarhio.
Indexing methods for approximate string matching. Bulletin of the Technical
Committee on Data Engineering, 24(4):19�27, December 2001. 42

[NK05] Marian Novotny and Gerard J. Kleywegt. A survey of left-handed helices in
protein structures. Journal of Molecular Biology, 347(2):231�241, March 2005.
16

[NMK04] Marian Novotny, Dennis Madsen, and Gerard J. Kleywegt. Evaluation of
protein fold comparison servers. Proteins: Structure, Function, and Bioinfor-
matics, 54(2):260�270, February 2004. 40

[NO74] Ken Nishikawa and Tatsuo Ooi. Comparison of homologous tertiary structures
of proteins. Journal of Theoretical Biology, 43(2):351�374, February 1974. 40

[NSB03] Stephen Neidle, Bohdan Schneider, and Helen M. Berman. Fundamentals of
DNA and RNA structure. In Bourne and Weissig [BW03], pages 41�73. 23

[NW70] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443�453, March 1970. 42

BIBLIOGRAPHY 151

[OH94] T. J. Old�eld and R. E. Hubbard. Analysis of Cα geometry in protein struc-
tures. Proteins: Structure, Function, and Genetics, 18(4):324�337, April 1994.
16, 57

[OKA03] Stephen D. O'Hearn, Anthony J. Kusalik, and Joseph F. Angel. MolCom: a
method to compare protein molecules based on 3-d structural and chemical
similarity. Protein Engineering, 16(2):169�178, February 2003. 40

[OMJ+97] Christine A. Orengo, Alex D. Michie, Susan Jones, David T. Jones, Mark B.
Swindells, and Janet M. Thornton. CATH � a hierarchic classi�cation of
protein domain structures. Structure, 5(8):1093�1108, August 1997. 113, 114

[OPB+99] Christine A. Orengo, Frances M. G. Pearl, James E. Bray, Annabel E. Todd,
Andrew C.R. Martin, Loredana Lo Conte, and Janet M. Thornton. The CATH
database provides insights into protein structure/function relationships. Nu-
cleic Acids Research, 27(1):275�279, January 1999. 113, 114

[OPT03] Christine A. Orengo, Frances M. G. Pearl, and Janet M. Thornton. The CATH
domain structure database. In Bourne and Weissig [BW03], pages 249�271.
113, 114

[PA98] Xavier Pennec and Nicholas Ayache. A geometric algorithm to �nd small but
highly similar 3D substructures in proteins. Bioinformatics, 14(6):516�522,
July 1998. 105

[PC50] Linus Pauling and Robert B. Corey. Two hydrogen-bonded spiral con�gura-
tions of the polypeptide chain. Journal of the American Chemical Society,
72(11):5349, November 1950. 6

[PC51] Linus Pauling and Robert B. Corey. Con�gurations of polypeptide chains with
favored orientations around single bonds: Two new pleated sheets. Proceedings
of the National Academy of Sciences of the USA, 37(11):205�211, November
1951. 8

[PCB51] Linus Pauling, Robert B. Corey, and Herman R. Branson. The structure
of proteins: Two hydrogen-bonded helical con�gurations of the polypeptide
chain. Proceedings of the National Academy of Sciences of the USA, 37(4):205�
211, April 1951. 6

[PCCS03] Alberto Paccanaro, Chakra Chennubhotla, James A. Casbon, and Mansoor
A. S. Saqi. Spectral clustering of protein sequences. In IJCNN 2003 [IJC03],
pages 3083�3088. 116

[PDB03] PDB Team. The protein data bank. In Bourne and Weissig [BW03], pages
181�198. 27

152 BIBLIOGRAPHY

[Pea97] William R. Pearson. Identifying distantly related protein sequences. Computer
Applications in the Biosciences, 13(4):325�332, August 1997. 42

[Per51] Max F. Perutz. New x-ray evidence on the con�guration of polypeptide chains.
Nature, 167(4261):1053�1054, June 1951. 8

[PES91] Robert Preiÿner, Ursula Egner, and Wolfram Saenger. Occurrence of bifur-
cated three-center hydrogen bonds in proteins. FEBS Letters, 288(1-2):192�
196, August 1991. 17

[Pet91] Gregory A. Petsko. Déjà vu all over again. Nature, 352(6331):104�105, July
1991. 37

[PGR+01] Robert Preiÿner, Andrean Goede, Kristian Rother, Frank Osterkamp, Ul-
rich Koert, and Cornelius Frömmel. Matching organic libraries with protein-
substructures. Journal of Computer-Aided Molecular Design, 15(9):811�817,
September 2001. 40

[Phi70] D. C. Phillips. The development of crystallographic enzymology. In Biochem.
Soc. Symp., volume 30, pages 11�28, 1970. 39

[PL88] William R. Pearson and David J. Lipman. Improved tools for biological se-
quence comparison. Proceedings of the National Academy of Sciences of the
USA, 85(8):2444�2448, April 1988. 42

[PPBS05] Pierre Peterlongo, Nadia Pisanti, Frederic Boyer, and Marie-France Sagot.
Lossless �lter for �nding long multiple approximate repetitions using a new
data structure, the bi-factor array. In SPIRE 2005 [SPI05], pages 179�190.
106

[PPvGR02] Dariusz Plewczynski, Jakub Pas, Marcin von Grotthuss, and Leszek Rych-
lewski. 3D-Hit: fast structural comparison of proteins. Applied Bioinformat-
ics, 1(4):223�225, 2002. 38

[PR04a] Sung-Hee Park and Keun Ho Ryu. E�ective �ltering for structural similarity
search in protein 3d structure databases. In DEXA 2004 [DEX04], pages
761�770. 40

[PR04b] Sung-Hee Park and Keun Ho Ryu. Fast �ltering of structural similarity search
using discovery of topological patterns. In IDEAL 2004 [IDE04], pages 396�
401. 40

[PR04c] Sung-Hee Park and Keun Ho Ryu. Fast similarity search for protein 3d struc-
ture databases using spatial topological patterns. In DEXA 2004 [DEX04],
pages 771�780. 40

BIBLIOGRAPHY 153

[PR04d] Gregory A. Petsko and Dagmar Ringe. Protein Structure and Function. New
Science Press, London, UK, 2004. 14, 20

[PRS03a] Sung-Hee Park, Keun Ho Ryu, and Hyeon S. Son. Protein structural infor-
mation management based on spatial concepts and active trigger rules. In
DEXA 2003 [DEX03], pages 413�422. 40

[PRS03b] Sung-Hee Park, Keun Ho Ryu, and Hyeon S. Son. Protein structure modeling
using a spatial model for structure comparison. In IDEAL 2003 [IDE03], pages
490�497. 40

[PSB99] Proceedings of the 4th Paci�c Symposium on Biocomputing (PSB'99). World
Scienti�c Press, January 1999. 154

[PSB03] Proceedings of the 8th Paci�c Symposium on Biocomputing (PSB'03). World
Scienti�c Press, January 2003. 155

[PSB04] Proceedings of the 9th Paci�c Symposium on Biocomputing (PSB'04). World
Scienti�c Press, January 2004. 136

[PSB05] Proceedings of the 10th Paci�c Symposium on Biocomputing (PSB'05). World
Scienti�c Press, January 2005. 138, 156

[PSC04] Proceedings of the 9th Prague Stringology Conference (PSC'04), Au-
gust/September 2004. 145

[RA76] Michael G. Rossmann and Patrick Argos. Exploring structural homology of
proteins. Journal of Molecular Biology, 105(1):75�95, July 1976. 40

[RB03] Boojala V. B. Reddy and Philip E. Bourne. Protein structure evolution and
the SCOP database. In Bourne and Weissig [BW03], pages 239�248. 113

[RDR+02] S. Robin, J.-J. Daudin, H. Richard, Marie-France Sagot, and S. Schbath.
Occurence probability of structured motifs in random sequences. Journal of
Computational Biology, 9(6):761�773, December 2002. 106

[REC99] Proceedings of the 3rd Annual International Conference on Research in Com-
putational Molecular Biology (RECOMB'99). ACM Press, April 1999. 138,
139

[REC02] Proceedings of the 6th Annual International Conference on Research in Com-
putational Molecular Biology (RECOMB'02). ACM Press, April 2002. 137,
139

[Ric85] Jane S. Richardson. Describing patterns of protein tertiary structure. In
Wycko� et al. [WHT85], pages 341�358. 106

154 BIBLIOGRAPHY

[RM80] S. James Remington and Brian W. Matthews. A systematic approach to the
comparison of protein structures. Journal of Molecular Biology, 140(1):77�99,
June 1980. 73

[Röm04] Uwe Römers. Motiv-Suche in Proteinstrukturdatenbanken unter Berücksichti-
gung von Deletionen und Insertionen. Diploma thesis, Technische Universität
München, Garching, Germany, September 2004. (In German). 89

[Ros85] George D. Rose. Automatic recognition of domains in globular proteins. In
Wycko� et al. [WHT85], pages 430�440. 17

[Ros99] Burkhard Rost. Twilight zone of protein sequence alignment. Protein Engi-
neering, 12(2):85�94, February 1999. 42

[RR85] Jane S. Richardson and David C. Richardson. Interpretation of electron den-
sity maps. In Wycko� et al. [WHT85], pages 189�206. 100

[RRS63] Gopalasamudram N. Ramachandran, Chandrashekharan Ramakrishnan, and
Visvanathan Sasisekharan. Stereochemistry of polypeptide chain con�gura-
tions. Journal of Molecular Biology, 7:95�99, July 1963. 57

[RS68] Gopalasamudram N. Ramachandran and Visvanathan Sasisekharan. Confor-
mation of polypeptides and proteins. Advances in Protein Chemistry, 23:283�
438, 1968. 16

[SB98] Ilya N. Shindyalov and Philip E. Bourne. Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein Engi-
neering, 11(9):739�747, September 1998. 37, 38

[SB04a] Jessica Shapiro and Douglas Brutlag. FoldMiner and LOCK2: protein struc-
ture comparison and motif discovery on the web. Nucleic Acids Research,
32(Web Server Issue):W536�W541, July 2004. 38

[SB04b] Jessica Shapiro and Douglas Brutlag. FoldMiner: Structural motif discovery
using an improved superposition algorithm. Protein Science, 13(1):278�294,
January 2004. 38

[SCH99] Shaobing Su, Diane J. Cook, and Lawrence B. Holder. Applications of knowl-
edge discovery to molecular biology: Identifying structural regularities in pro-
teins. In PSB 1999 [PSB99], pages 190�201. 106

[SCH+02] Christian J. Sigrist, Lorenzo Cerutti, Nicolas Hulo, Alexandre Gattiker, Lau-
rent Falquet, Marco Pagni, Amos Bairoch, and Philipp Bucher. PROSITE: A
documented database using patterns and pro�les as motif descriptors. Brief-
ings in Bioinformatics, 3(3):265�274, September 2002. 90

BIBLIOGRAPHY 155

[SDSD+04] Maxim Shatsky, Oranit Dror, Dina Schneidman-Duhovny, Ruth Nussinov,
and Haim J. Wolfson. BioInfo3D: a suite of tools for structural bioinformatics.
Nucleic Acids Research, 32(Web Server Issue):W503�W507, July 2004. 40

[SF03] Eric D. Schee� and J. Lynn Fink. Fundamentals of protein structure. In
Bourne and Weissig [BW03], pages 15�39. 20

[SGJT04] Hugh P. Shanahan, Mario A. Garcia, Susan Jones, and Janet M. Thornton.
Identifying DNA-binding proteins using structural motifs and the electrostatic
potential. Nucleic Acids Research, 32(16):4732�4741, September 2004. 100

[SH03] Edward S.C. Shih and Ming-Jing Hwang. Protein structure comparison by
probability-based matching of secondary structure elements. Bioinformatics,
19(6):735�741, April 2003. 40

[Sip82] Manfred J. Sippl. On the problem of comparing protein structures: De-
velopment and applications of a new method for the assessment of struc-
tural similarities of polypeptide conformations. Journal of Molecular Biology,
156(2):359�388, April 1982. 71

[SK04] Michael L. Sierk and Gerard J. Kleywegt. Déjà vu all over again: Finding and
analyzing protein structure similarities. Structure, 12(12):2103�2111, Decem-
ber 2004. 40

[SMB04] Bohdan Schneider, Zden¥k Morávek, and Helen M. Berman. RNA conforma-
tional classes. Nucleic Acids Research, 32(5):1666�1677, March 2004. 57

[Smi04] Scott F. Smith. Protein family classi�cation using structural and sequence
information. In CIBCB 2004 [CIB04], pages 168�174. 115

[SPI99] Proceedings of the 6th Symposium on String Processing and Information Re-
trieval (SPIRE'99), September 1999. 138

[SPI05] Proceedings of the 12th Symposium on String Processing and Information
Retrieval (SPIRE'05), volume 3772 of Lecture Notes in Computer Science.
Springer, November 2005. 152

[SR03] Alexander Stark and Robert B. Russell. Annotation in three dimensions.
PINTS: Patterns in non-homologous tertiary structures. Nucleic Acids Re-
search, 31(13):3341�3344, July 2003. 106

[SS03] Rohit Singh and Mitul Saha. Identifying structural motifs in proteins. In
PSB 2003 [PSB03], pages 228�239. 106

[STO72] Proceedings of the 4th Annual ACM Symposium on Theory of Computing
(STOC'72), May 1972. 147

156 BIBLIOGRAPHY

[SVPS95] Marie-France Sagot, Alain Viari, Joël Pothier, and Henry Soldano. Finding
�exible patterns in a text � an application to 3d molecular matching. Computer
Applications in the Biosciences, 11(1):59�70, February 1995. 105

[SVS97] Marie-France Sagot, Alain Viari, and Henry Soldano. Multiple sequence com-
parison � a peptide matching approach. Theoretical Computer Science, 180(1-
2):115�137, June 1997. 106

[SW81] Temple F. Smith and Michael S. Waterman. Identi�cation of common molecu-
lar subsequences. Journal of Molecular Biology, 147(1):195�197, March 1981.
42, 105

[Tan04] Thomas Tang. Discovering Protein Sequence-Structure Motifs and Two Appli-
cations to Structural Prediction. PhD thesis, University of Waterloo, Waterloo,
Ontario, Canada, 2004. 106

[TBG04] Hanjo Täubig, Arno Buchner, and Jan Griebsch. A method for fast approxi-
mate searching of polypeptide structures in the PDB. In GCB 2004 [GCB04],
pages 65�74. 38

[TG89] Janet M. Thornton and Stephen P. Gardner. Protein motifs and data-base
searching. Trends in Biochemical Sciences, 14(7):300�304, July 1989. 27

[The05] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based
characteristic polynomial. Acta Crystallographica, A61(4):478�480, July 2005.
71

[Toh97] Hiroyuki Toh. Introduction of a distance cut-o� into structural alignment by
the double dynamic programming algorithm. Computer Applications in the
Biosciences, 13(4):387�396, August 1997. 40

[TXL05] Thomas Tang, Jinbo Xu, and Ming Li. Discovering sequence-structure motifs
from protein segments and two applications. In PSB 2005 [PSB05], pages
370�381. 106

[Ukk93] Esko Ukkonen. Approximate string-matching over su�x trees. In CPM 1993
[CPM93], pages 228�242. 42

[Ukk95] Esko Ukkonen. On-line construction of su�x trees. Algorithmica, 14(3):249�
260, September 1995. 36, 44

[Ume91] Shinji Umeyama. Least-squares estimation of transformation parameters be-
tween two point patterns. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 13(4):376�, April 1991. 71

BIBLIOGRAPHY 157

[VBK02] Saraswathi Vishveshwara, K. V. Brinda, and N. Kannan. Protein structure:
Insights from graph theory. Journal of Theoretical and Computational Chem-
istry, 1(1):187�211, July 2002. 105

[VG01] Juris V	�ksna and David R. Gilbert. Pattern matching and pattern discovery
algorithms for protein topologies. In WABI 2001 [WAB01], pages 98�111. 106

[vHJH98] Kensal E. van Holde, W. Curtis Johnson, and P. Shing Ho. Principles of
Physical Biochemistry. Prentice-Hall, 1998. 20

[Vil02] Jaak Vilo. Pattern Discovery from Biosequences. PhD thesis, University of
Helsinki, Helsinki, Finland, 2002. 106

[WAB01] Proceedings of the 1st Workshop on Algorithms in BioInformatics (WABI'01),
volume 2149 of Lecture Notes in Computer Science, August 2001. 157

[WAD99] Proceedings of the 6th International Workshop on Algorithms and Data Struc-
tures (WADS'99), volume 1663 of Lecture Notes in Computer Science, August
1999. 138

[WB03] Helge Weissig and Philip E. Bourne. Other structure-based databases. In
Bourne and Weissig [BW03], pages 217�236. 27

[WBT97] Andrew C. Wallace, Neera Borkakoti, and Janet M. Thornton. TESS: A
geometric hashing algorithm for deriving 3d coordinate templates for search-
ing structural databases. application to enzyme active sites. Protein Science,
6(11):2308�2323, November 1997. 38

[WC53] James D. Watson and Francis H. Crick. Molecular structure of nucleic acids:
A structure for deoxyribose nucleic acid. Nature, 171(4356):737�738, April
1953. 22

[Wei73] Peter Weiner. Linear pattern matching algorithms. In Proceedings of the 14th
IEEE Annual Symposium on Switching and Automata Theory, pages 1�11.
IEEE, 1973. 36

[WHT85] Harold W. Wycko�, C. H. W. Hirs, and Serge N. Timashe�, editors. Di�rac-
tion Methods for Biological Macromolecules, volume 115B of Methods in En-
zymology. Academic Press, 1985. 143, 146, 150, 153, 154

[WKHK03] Nils Weskamp, Daniel Kuhn, Eyke Hüllermeier, and Gerhard Klebe. E�cient
similarity search in protein structure databases: Improving clique-detection
through clique hashing. In GCB 2003 [GCB03], pages 179�184. 105

[WKHK04] Nils Weskamp, Daniel Kuhn, Eyke Hüllermeier, and Gerhard Klebe. E�cient
similarity search in protein structure databases by k-clique hashing. Bioinfor-
matics, 20(10):1522�1526, July 2004. 105, 106

158 BIBLIOGRAPHY

[WLT96] Andrew C. Wallace, Roman A. Laskowski, and Janet M. Thornton. Derivation
of 3d coordinate templates for searching structural databases: Application
to ser-his-asp catalytic triads in the serine proteinases and lipases. Protein
Science, 5(6):1001�1013, June 1996. 40

[WW03] Lorenz Wernisch and Shoshana J. Wodak. Identifying structural domains in
proteins. In Bourne and Weissig [BW03], pages 365�385. 17

[YG03] Yuzhen Ye and Adam Godzik. Flexible structure alignment by chaining
aligned fragment pairs allowing twists. Bioinformatics, 19(Suppl. 2):ii246�
ii255, September 2003. 38

[YG04a] Yuzhen Ye and Adam Godzik. Database searching by �exible protein structure
alignment. Protein Science, 13(7):1841�1850, July 2004. 38

[YG04b] Yuzhen Ye and Adam Godzik. FATCAT: a web server for �exible struc-
ture comparison and structure similarity searching. Nucleic Acids Research,
32(Web Server Issue):W582�W585, July 2004. 38

[YG05] Yuzhen Ye and Adam Godzik. Multiple �exible structure alignment using
partial order graphs. Bioinformatics, 21(10):2362�2369, May 2005. 40

[YJL04] Jieping Ye, Ravi Janardan, and Songtao Liu. Pairwise protein structure align-
ment based on an orientation-independent backbone representation. Journal
of Bioinformatics and Computational Biology, 2(4):699�717, December 2004.
40

[Zem03] Adam Zemla. LGA: a method for �nding 3D similarities in protein structures.
Nucleic Acids Research, 31(13):3370�3374, July 2003. 40

[ZKS96] Feng Zu-Kang and Manfred J. Sippl. Optimum superimposition of protein
structures: ambiguities and implications. Folding and Design, 1(2):123�132,
April 1996. 40

[ZS89] Michael Zuker and Ray L. Somorjai. The alignment of protein structures
in three dimensions. Bulletin of Mathematical Biology, 51(1):55�78, January
1989. 40

[ZW05] Jianhua Zhu and Zhiping Weng. FAST: A novel protein structure alignment
algorithm. Proteins: Structure, Function, and Bioinformatics, 58(3):618�627,
February 2005. 40

Glossary

Convergent evolution Evolutionary process that gradually alters unrelated
structures into similar structures due to selective pres-
sures of similar functional requirements. , 113

Divergent evolution Evolutionary process that gradually alters similar re-
lated sequences (of a common ancestor) into di�erent
sequences due to adaption of di�erent new selective
pressures. , 113

E-value Expectation value, e.g. in BLAST, used to describe
the signi�cance of an alignment by the number of
equivalent or better alignments that are expected to
occur in a database search by chance. A lower E-value
indicates a higher signi�cance of the score. , 100

P-value Probability of an alignment to occur with at least the
given score. The value is calculated by relating the ob-
served alignment score to the expected distribution of
high-scoring pairs (HSP) scores that are derived from
random sequences of the same length and composition
as the query. A lower P-value indicates a higher signif-
icance of the score. This measure is used, for instance,
in the context of BLAST searches. , 100

159

160 BIBLIOGRAPHY

Index

310-helix, 13, 16, 18, 100
Cα, 5, 9�11, 37�39, 57, 60, 78
Σ+-tree, 31

atomic, 31
compact, 33
path-compressed, 33

α, 6, 55, 56, 60�64, 73, 80
α-helix, 11, 13, 16, 18, 90
β, 6
β-α-β motif, 17
β-hairpin, 17, 90
β-sheet, 8, 12, 17

antiparallel, 17
parallel, 17

β-strand, 11, 17, 90, 100
β-turn, 17
γ-helix, 8
ω, 11, 73, 77, 78
π-helix, 13, 16, 19, 100
ψ, 11, 58, 59, 73, 77�80, 93
τ , 38, 40, 60�64, 73
ϕ, 11, 58, 59, 73, 77�80, 93

accuracy, 40, 80, 84, 92, 99
active su�x, 44, 47
alphabet, 29, 50, 77, 80�83, 99
alternative splicing, 2, 3
amino acids, 1�3, 6, 8

proteinogenic, 6, 7
angle, 71, 73

bond, 38, 55, 77
dihedral, 10, 55, 77, 78
torsion, 10, 55

antibodies, 2, 21
argument, 56
atomic Σ+-tree, 31

backbone, 8�11, 37, 77, 115
bases, 23, 24
bond angle, 38, 55, 77

canonical reference pair, 44
Central Dogma, 2, 22
chiral, 5
cis-conformation, 9, 10, 56, 77
compact trie, 33
comparison operator, 29
computational proteomics, 3
conservation, 20
containedness-similarity matrix, 116
contraction proteins, 2, 21
convergent evolution, 113, 159

deoxyribonucleic acid, see DNA
depth-�rst search, see DFS
DFS, 39, 110
dictionary, 32
dihedral angle, 10, 55, 77, 78
discretization, 78, 80

equidistant, 80
distance

edit d., 67, 73
Hamming d., 67, 73, 106
Levenshtein d., 67, 73

distance function, 67
divergent evolution, 42, 113, 159
DNA, 1, 5, 22�26
domain, 11, 17, 106, 113
dynamic programming, 37, 89

edit distance, 67, 73
enantiomer, 6, 8, 39
enzymes, 2, 21

161

162 INDEX

explicit node, 44

false negatives, 42
false positives, 42
folding, 2, 11, 20
fragment, 88

generalized su�x tree, 49
genome, 1, 3
genomics, 1
Greek key, 17
GST, see generalized su�x tree

Hamming distance, 67, 73, 106
helices, 11, 12, 100

310-helix, 13, 16, 18, 100
α-helix, 11, 13, 16, 18
γ-helix, 8
π-helix, 13, 16, 19, 100

helix-loop-helix motif, 17
helix-turn-helix motif, 17
hormones, 2, 21
hydrophobic collapse, 20

implicit node, 44
index, 31, 78
intervals, 80

jelly roll, 17

leaf list, 54
Levenshtein distance, 67, 73

McCreight's algorithm, 36, 43
metric, 67
model organism, 1
monomer, 5, 8
motif, 17, 105, 110

native state, 2
nested su�x, 43
nucleic acid, 5, 20, 23

structure, 20
nucleotide, 23, 25

occurrence, 30, 34

online algorithm, 36, 43
open edge, 45

PAST, 80
path compression, 33
PATRICIA tree, 33
PDB, 3, 23
peptide, 8
peptide bond, 8, 9
phase, 56
pleated sheet, see β-sheet
polymer, 5
polypeptide, 5, 8
Polypeptide Angles Su�x Tree, 80
polysaccharides, 5
post-translational modi�cations, 2, 3
precision, 42
pre�x, 30

proper, 30
preprocessing, 33
primary structure, 11, 12
proper pre�x/su�x, 30
proteinogenic, 6
proteins, 2, 5

contraction p., 2, 21
storage p., 2, 21
structure p., 2, 21
transport p., 2, 21

protein biosynthesis, 22
protein function, 2, 21
proteome, 2
proteomics, 2
pseudometric, 67

quaternary structure, 11, 12, 14

Ramachandran plot, 16, 57, 59
reference pair, 44

canonical, 44
relevant su�x, 47
residue, 8
ribonucleic acid, see RNA
right-branching substring, 43
RMSD, 67, 115

INDEX 163

RNA, 2, 5, 22�26
mRNA, 22, 24
rRNA, 24
tRNA, 24

root-mean-square distance, 67
root-mean-square deviation, 71
rotamer, 55
rotation matrix, 56

secondary structure, 11, 12
secondary structure elements, 11, 38
sensitivity, 37, 42, 86
sentinel, 33, 43, 49, 50, 54, 80
sequence, 29
sequence identi�er, 50
side chain, 5
similarity, 67, 115
similarity function, 67
similarity measures, 67

angle-based, 71
distance-based, 67
string-based, 67

speci�city, 42
SSE, 11, 38
storage proteins, 2, 21
string, 29
structural bioinformatics, 3
structural genomics, 4
structural motif, 17, 105, 110
structure

primary, 11, 12
quaternary, 11, 12, 14
secondary, 11, 12
supersecondary, 17
tertiary, 11, 12

structure comparison, 38, 115
structure proteins, 2, 21
subword, 30
su�x, 30

active, 44, 47
proper, 30
relevant, 47

su�x function, 44

su�x links, 44
su�x tree, 34, 35

explicit node, 44
generalized, 49
implicit node, 44
linear-time construction, 36
McCreight's algorithm, 36, 43
reference pair, 44
Ukkonen's algorithm, 36, 43
Weiner's algorithm, 36

su�x trie, 34, 86
supersecondary structure, 17

tertiary structure, 11, 12
text, 30
time complexity, 33
torsion angle, 10, 55, 107

virtual bond torsion angle, 78
trans-conformation, 9, 10, 56, 77
transcription, 2
transcription factors, 2, 21
translation, 2
transport proteins, 2, 21
trie, 31
true negatives, 42
true positives, 42

Ukkonen's algorithm, 36, 43

virtual bond, 78
virtual bond torsion angle, 78

Weiner's algorithm, 36

zinc �nger, 17, 90
CCHC type, 91
C2H2 type, 92

	Preface
	Introduction
	Motivation
	The Human Genome Project
	The Importance of the Proteome
	Sequence Determines Structure Determines Function
	Determination of Structure

	Structural Bioinformatics and Computational Proteomics

	Biochemical Foundation
	Biopolymers
	Proteins
	Amino Acids as Basic Modules of Proteins
	Historic Background
	Formation of the Backbone
	Protein Structure
	Secondary Structure Elements
	Supersecondary Structure, Motifs, and Domains
	Comment
	Further Reading
	Protein Folding
	Protein Functions

	Nucleic Acids and the Central Dogma
	DNA and RNA
	Protein Biosynthesis
	DNA and RNA Structure

	The Protein Data Bank

	Algorithmic Foundation
	Pattern Matching
	Atomic +-Trees (Tries)
	Compact +-Trees (PATRICIA Trees)
	Suffix Tries and Suffix Trees

	Searching in Protein Structure Databases
	Previous Work on Structure Searching
	Drawbacks of Current Methods
	Text Searching
	Searching Amino Acid Sequences

	Evaluation of Service Quality
	The Polypeptide Angles Suffix Trees
	Construction of the Suffix Tree
	Generalized Suffix Trees
	Implementation Issues

	Structure and Feature Representations
	Computation of Bond Angles
	Formal Definition and Computation of Torsion Angles
	Angle Distributions

	Measures of Protein Similarity
	String-Based Similarity Measures
	Distance-Based Similarity Measures
	Angle-Based Similarity Measures
	The Arithmetic String Distance

	Structure Searching via Encoded Backbones
	Less (Information) is More: The Structure Alphabet
	Construction of the Polypeptide Angles Suffix Tree
	Properties of the PAST
	Exact Searching
	Finding the Longest Common Substructure
	Tolerant Searching
	Searching with Insertions and Deletions

	Applications
	Zinc Fingers
	Searching Zinc Fingers of the CCHC-Type
	Searching Classic Zinc Fingers
	Other Applications

	Motifs and Classification
	Identification of Motifs
	Previous Work on Motif Detection
	Computation of Average Structures
	Extraction of Frequent Substructures

	Protein Structure Classification
	The SCOP Database
	The CATH Database
	Remarks

	Containedness and Similarity
	Results

	Conclusion
	List of PAST Query Results
	List of PROSITE Entries
	List of SCOP Entries
	List of CATH Entries
	List of Abbreviations / Acronyms
	Bibliography
	Glossary
	Index

